\qquad
\qquad
\qquad

Practice Final Exam- Fall 2015

Multiple Choice

Identify the choice that best completes the statement or answers the question.
*Final exam is 20% of your grade. Your final will be very heavy on ch 4,25,5-9 and 11.

* You need your own cacluclator, pencil.
*You cannot exchange calculators with your teacher.
\qquad 1. Which of the following is NOT an example of matter?
a. air
c. smoke
b. heat
d. water vapor
\qquad 2. All of the following are physical properties of matter EXCEPT \qquad .
a. mass
c. melting point
b. color
d. ability to rust
\qquad 3. Which of the following are considered physical properties of a substance?
a. color and odor
c. malleability and hardness
b. melting and boiling points
d. all of the above
\qquad 4. Which state of matter has a definite volume and takes the shape of its container?
a. solid
c. gas
b. liquid
d. both b and c
\qquad 5. Which state of matter is characterized by having a definite shape and a definite volume?
a. gas
c. solid
b. liquid
d. all of the above
\qquad 6. All of the following are physical properties of a substance in the liquid state EXCEPT \qquad .
a. indefinite volume
c. not easily compressed
b. definite mass
d. indefinite shape
\qquad 7. Which of the following is a physical change?
a. corrosion
c. evaporation
b. explosion
d. rotting of food
\qquad 8. Which of the following is a heterogeneous mixture?
a. air
c. steel
b. salt water
d. soil
\qquad 9. Separating a solid from a liquid by evaporating the liquid is called \qquad .
a. filtration
c. solution
b. condensation
d. distillation
\qquad 10. A substance that can be separated into two or more substances only by a chemical change is a(n) \qquad .
a. solution
c. mixture
b. element
d. compound

11. Which of the following indicates that a chemical change has happened during cooking?
a. The food darkens.
b. Bubbles form in boiling water.
c. Butter melts.
d. Energy is transferred from the stove to a pan.
12. Which of the following is NOT a part of Dalton's atomic theory?
a. All elements are composed of atoms.
b. Atoms are always in motion.
c. Atoms of the same element are identical.
d. Atoms that combine do so in simple whole-number ratios.
13. All atoms are \qquad .
a. positively charged, with the number of protons exceeding the number of electrons
b. negatively charged, with the number of electrons exceeding the number of protons
c. neutral, with the number of protons equaling the number of electrons
d. neutral, with the number of protons equaling the number of electrons, which is equal to the number of neutrons
14. The nucleus of an atom is \qquad _.
a. the central core and is composed of protons and neutrons
b. positively charged and has more protons than neutrons
c. negatively charged and has a high density
d. negatively charged and has a low density
15. The sum of the protons and neutrons in an atom equals the \qquad .
a. atomic number
c. atomic mass
b. nucleus number
d. mass number
16. What does the number 84 in the name krypton-84 represent?
a. the atomic number
c. the sum of the protons and electrons
b. the mass number
d. twice the number of protons
17. All atoms of the same element have the same \qquad .
a. number of neutrons
c. mass numbers
b. number of protons
d. mass
18. Isotopes of the same element have different \qquad .
a. numbers of neutrons
c. numbers of electrons
b. numbers of protons
d. atomic numbers
19. The mass number of an element is equal to \qquad -.
a. the total number of electrons in the nucleus
b. the total number of protons and neutrons in the nucleus
c. less than twice the atomic number
d. a constant number for the lighter elements
20. If E is the symbol for an element, which two of the following symbols represent isotopes of the same element?
21. ${ }_{10}^{20} \mathrm{E}$
22. ${ }_{11}^{20} \mathrm{E}$
23. ${ }_{9}^{21} \mathrm{E}$
24. ${ }_{10}^{21} \mathrm{E}$
a. 1 and 2
b. 3 and 4
c. 1 and 4
d. 2 and 3
25. Which of the following sets of symbols represents isotopes of the same element?
a. $\quad{ }_{42}^{91} \mathrm{~J} \quad{ }_{42}^{92} \mathrm{~J} \quad{ }_{40}^{93} \mathrm{~J}$
b. $\quad{ }_{19}^{50} \mathrm{~L} \quad{ }_{20}^{50} \mathrm{~L} \quad{ }_{21}^{50} \mathrm{~L}$
c. $\quad{ }_{38}^{84} \mathrm{M} \quad{ }_{38}^{86} \mathrm{M} \quad{ }_{38}^{87} \mathrm{M}$
d. $\quad{ }_{59}^{138} \mathrm{Q} \quad{ }_{55}^{133} \mathrm{Q} \quad{ }_{54}^{133} \mathrm{Q}$
26. How do the isotopes hydrogen-1 and hydrogen-2 differ?
a. Hydrogen-2 has one more electron than hydrogen-1.
b. Hydrogen-2 has one neutron; hydrogen-1 has none.
c. Hydrogen-2 has two protons; hydrogen-1 has one.
d. Hydrogen-2 has one proton; hydrogen-1 has none.
27. Which of the following equals one atomic mass unit?
a. the mass of one electron
b. the mass of one helium-4 atom
c. the mass of one carbon- 12 atom
d. one-twelfth the mass of one carbon-12 atom
28. The atomic mass of an element is the \qquad .
a. total number of subatomic particles in its nucleus
b. weighted average of the masses of the isotopes of the element
c. total mass of the isotopes of the element
d. average of the mass number and the atomic number for the element
29. What type of ions have names ending in -ide?
a. only cations
c. only metal ions
b. only anions
d. only gaseous ions
30. What is the correct name for the N^{3-} ion?
a. nitrate ion
c. nitride ion
b. nitrogen ion
d. nitrite ion
31. The nonmetals in Groups 6A and 7A \qquad .
a. lose electrons when they form ions
b. have a numerical charge that is found by subtracting 8 from the group number
c. all have ions with a -1 charge
d. end in -ate
32. An -ate or -ite at the end of a compound name usually indicates that the compound contains \qquad .
a. fewer electrons than protons
c. only two elements
b. neutral molecules
d. a polyatomic anion
33. Which of the following formulas represents an ionic compound?
a. CS_{2}
b. BaI_{2}
c. $\mathrm{N}_{2} \mathrm{O}_{4}$
d. PCl_{3}
34. Which of the following compounds contains the lead(II) ion?
a. PbO
b. $\quad \mathrm{PbCl}_{4}$
c. $\mathrm{Pb}_{2} \mathrm{O}$
d. $\mathrm{Pb}_{2} \mathrm{~S}$
35. What is the correct formula for potassium sulfite?
a. KHSO_{3}
b. KHSO_{4}
c. $\mathrm{K}_{2} \mathrm{SO}_{3}$
d. $\mathrm{K}_{2} \mathrm{SO}_{4}$
36. Which set of chemical name and chemical formula for the same compound is correct?
a. ammonium sulfite, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
c. lithium carbonate, LiCO_{3}
b. iron(III) phosphate, FePO_{4}
d. magnesium dichromate, MgCrO_{4}
37. Which of the following formulas represents a molecular compound?
a. ZnO
b. Xe
c. SO_{2}
d. BeF_{2}
38. What is the name of $\mathrm{H}_{2} \mathrm{SO}_{3}$?
a. hyposulfuric acid
c. sulfuric acid
b. hydrosulfuric acid
d. sulfurous acid
39. What is the formula for sulfurous acid?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{H}_{2} \mathrm{SO}_{3}$
c. $\mathrm{H}_{2} \mathrm{SO}_{2}$
d. $\mathrm{H}_{2} \mathrm{~S}$
40. What is the formula for phosphoric acid?
a. $\mathrm{H}_{2} \mathrm{PO}_{3}$
b. $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. HPO_{2}
d. HPO_{4}
41. What is the correct name for the compound CoCl_{2} ?
a. cobalt(I) chlorate
c. cobalt(II) chlorate
b. cobalt(I) chloride
d. cobalt(II) chloride
42. What is the correct formula for barium chlorate?
a. $\mathrm{Ba}(\mathrm{ClO})_{2}$
b. $\mathrm{Ba}\left(\mathrm{ClO}_{2}\right)_{2}$
c. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
d. BaCl_{2}
43. Which of the following is the correct name for $\mathrm{N}_{2} \mathrm{O}_{5}$?
a. nitrous oxide
c. nitrogen dioxide
b. dinitrogen pentoxide
d. nitrate oxide
44. A catalyst is \qquad -.
a. the product of a combustion reaction
b. not used up in a reaction
c. one of the reactants in single-replacement reactions
d. a solid product of a reaction
45. What are the coefficients that will balance the skeleton equation below?
$\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
a. $1,1,2$
b. $1,3,3$
c. $3,1,2$
d. $1,3,2$
46. Chemical equations must be balanced to satisfy \qquad
a. the law of definite proportions
c. the law of conservation of mass
b. the law of multiple proportions
d. Avogadro's principle
47. What are the missing coefficients for the skeleton equation below?
$\mathrm{Cr}(s)+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{Fe}(s)+\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(a q)$
a. $4,6,6,2$
b. $2,3,2,3$
c. $2,3,3,2$
d. $1,3,3,1$
48. Classify the type of reaction $2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$.
a. double replacement
b. single replacement
c. decomposition
d. combustion
49. Which of the following is a balanced equation representing the decomposition of lead(IV) oxide?
a. $\quad \mathrm{PbO}_{2} \rightarrow \mathrm{~Pb}+2 \mathrm{O}$
b. $\mathrm{PbO}_{2} \rightarrow \mathrm{~Pb}+\mathrm{O}_{2}$
c. $\mathrm{Pb}_{2} \mathrm{O} \rightarrow 2 \mathrm{~Pb}+\mathrm{O}$
d. $\mathrm{PbO} \rightarrow \mathrm{Pb}+\mathrm{O}_{2}$
50. In a double-replacement reaction the reactants are usually:
a. one compound
b. single element and one compound
c. two compounds
d. hydrocarbon and oxygen
51. The complete combustion of which of the following substances produces carbon dioxide and water?
a. $\mathrm{C}_{8} \mathrm{H}_{18}$
c. CaHCO_{3}
b. $\mathrm{K}_{2} \mathrm{CO}_{3}$
d. NO
52. The reaction $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ is an example of which type of reaction?
a. combustion reaction
c. combination reaction
b. single-replacement reaction
d. decomposition reaction
53. Matter is made of atoms that have positive centers of neutrons and protons surrounded by a cloud of negatively charged electrons. This statement is
a. a theory.
c. an inference.
b. a hypothesis.
d. an observation.
54. A metallic oxide mixed with water will produce what type of compound?
a. acid
b. base
55. Why is cobalt (Co) placed before nickel (Ni) on the periodic table of the elements even though it has a higher average atomic mass than nickel?
a. Nickel has one more proton.
c. Nickel has fewer electrons.
b. Cobalt was discovered first.
d. Cobalt has a lower density.
56.

Iodine would have chemical properties most like
a. manganese (Mn)
c. chlorine (Cl).
b. tellurium (Te)
d. xenon (Xe).
53.

Results of Firing Alpha Particles at Gold Foil

Observation:	Proportion:
Alpha particles went straight through gold foil.	$>98 \%$
Alpha particles went through gold foil but were deflected at large angles.	$\approx 2 \%$
Alpha particles bounced off gold foil.	$\approx 0.01 \%$

What information do the experimental results above reveal about the nucleus of the gold atom?
a. The nucleus contains less than half the mass of the atom.
c. The nucleus contains small positive and negative particles.
b. The nucleus is small and is the densest part of the atom.
d. The nucleus is large and occupies most of the atom's space.
54. Why are enormous amounts of energy required to separate a nucleus into its component protons and neutrons even though the protons in the nucleus repel each other?
a. The force of the protons repelling each other is small compared to the attraction of the neutrons to each other.
c. The interactions between neutrons and electrons neutralize the repulsive forces between the protons.
b. The electrostatic forces acting between other atoms lowers the force of repulsion of the protons.
d. The forces holding the nucleus together are much stronger than the repulsion between the protons.
55.

Which equation correctly represents the alpha decay of polonium-214?

A

B

$$
84 \mathrm{Po}+{ }_{4}^{214} \mathrm{He} \rightarrow{ }_{90}^{216} \mathrm{Th}
$$

C

D

a. A
c. C
b. B
d. D
56. A 2-cm-thick piece of cardboard placed over a radiation source would be most effective in protecting against which type of radiation?
a. alpha
c. gamma
b. beta
d. x-ray
57. All atoms are \qquad -.
a. positively charged, with the number of protons exceeding the number of electrons
b. neutral, with the number of protons equaling the number of neutrons, which is equal to half the number of electrons negatively charged.
c. neutral, with the number of protons equaling the number of electrons
d. neutral, with the number of electrons equally
the number of neutrons.
58. Two science students discovered that the mass of a sample of acetone in an open beaker decreased within a few minutes. One student hypothesized that the acetone reacted with oxygen to form a gaseous compound that escaped. The other student believed that the acetone evaporated. What should the students do to test the hypothesis?
a. combine the hypothesis so they give valid predictions
b. conduct a study of original papers describing the experiments leading to acetone's discovery
c. perform an experiment that attempts to identify the gas above the open beaker
d. ask a classmate's opinion about the chemical and physical properties of acetone
59.

The element Mn would be classified as a
a. noble gas
c. transition metal
b. halogen
d. alkali earth metal
60.

The illustration below shows the gold-foil experiment conducted by Ernest Rutherford. According to the drawing, most of the positively charged particles that were "shot" at the foil went straight through the gold foil without changing course. After analyzing the results of this test, Rutherford concluded that
a. atoms are completely solid.
b. atoms are made up of positive and negative charges all mixed together.
c. an atom has a solid, positively charge nucleus surrounded by electrons.
d. gold atoms are more loosely packed than most other metal atoms.
61. Which of the following is a monatomic gas at STP?
a. Chlorine
c. Helium
b. Florine
d. Nitrogen
62. A nonmetallic oxide mixed with water will produce what type of compound?
a. acid
b. base
63. When cation and anion join, they form what kind of chemical bond?
a. Ionic
c. Molecular
b. Hydrogen
d. Metallic

Table of Common Molecules				
Name	Hydrogen	Chlorine	Ammonia	Methane
Molecular Formula	H_{2}	Cl_{2}	NH_{3}	CH_{4}

64.

What type of bond to all of these compounds have in common?
a. Covalent
c. hydrogen
b. ionic
d. metallic
65.

The picture is a model for which element?
a. Carbon
c. Beryllium
b. Florine
d. Nitrogen
66. Which compound represents an ionic compound?
a. $\quad \mathrm{SF}_{6}$
b. NaHCO_{3}
c. F_{2}
d. CH_{4}
67. Which of the following compounds is an acid?
a. $\mathrm{H}_{2} \mathrm{O}$
b. NH_{3}
c. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d. LiH
68. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

This chemical equation represents the combustion of propane. When correctly balanced, the coefficient for water is
a. 2
b. 4
c. 8
d. 16
69. How many energy sublevels are in the second principal energy level?
a. 1
b. 2
c. 3
d. 4
70. What is the maximum number of f orbitals in any single energy level in an atom?
a. 1
b. 3
c. 5
d. 7
71. The letter " p " in the symbol $4 p^{3}$ indicates the \qquad .
a. spin of an electron
c. principle energy level
b. orbital shape
d. speed of an electron
72. If the spin of one electron in an orbital is clockwise, what is the spin of the other electron in that orbital?
a. zero
c. counterclockwise
b. clockwise
d. both clockwise and counterclockwise
73. What types of atomic orbitals are in the third principal energy level?
a. $\quad s$ and p only
b. $\quad p$ and d only
c. s, p, and d only
d. s, p, d, and f
74. What is the next atomic orbital in the series $1 s, 2 s, 2 p, 3 s, 3 p$?
a. $2 d$
c. $3 f$
b. 3d
d. 4 s
75. What is the number of electrons in the outermost energy level of an oxygen atom?
a. 2
b. 4
c. 6
d. 8
76. How many half-filled orbitals are in a bromine atom?
a. 1
b. 2
c. 3
d. 4
77. Stable electron configurations are likely to contain \qquad .
a. filled energy sublevels
b. fewer electrons than unstable configurations
c. unfilled s orbitals
d. electrons with a clockwise spin
78. Which of the following electron configurations of outer sublevels is the most stable?
a. $4 d^{5} 5 s^{1}$
b. $4 d^{4} 5 s^{2}$
c. $4 d^{3} 5 s^{3}$
d. $4 d^{2} 5 s^{4}$
79. How does the speed of visible light compare with the speed of gamma rays, when both speeds are measured in a vacuum?
a. The speed of visible light is greater.
b. The speed of gamma rays is greater.
c. The speeds are the same.
d. No answer can be determined from the information given.
80. Which color of visible light has the shortest wavelength?
a. yellow
c. blue
b. green
d. violet
81. Which type of electromagnetic radiation includes the wavelength $10^{-7} \mathrm{~m}$?
a. gamma ray
c. radio wave
b. microwave
d. visible light
82. The light given off by an electric discharge through sodium vapor is \qquad .
a. a continuous spectrum
c. of a single wavelength
b. an emission spectrum
d. white light
83. What are quanta of light called?
a. charms
c. muons
b. excitons
d. photons
84. Which scientist developed the quantum mechanical model of the atom?
a. Albert Einstein
c. Niels Bohr
b. Erwin Schrodinger
d. Ernest Rutherford
85. Which of the following elements is in the same period as phosphorus?
a. carbon
c. nitrogen
b. magnesium
d. oxygen
86. Each period in the periodic table corresponds to \qquad
a. a principal energy level
c. an orbital
b. an energy sublevel
d. a suborbital
87. The modern periodic table is arranged in order of increasing atomic \qquad .
a. mass
c. number
b. charge
d. radius
88. Of the elements $\mathrm{Pt}, \mathrm{V}, \mathrm{Li}$, and Kr , which is a nonmetal?
a. Pt
c. Li
b. V
d. Kr
89. To what category of elements does an element belong if it is a poor conductor of electricity?
a. transition elements
c. nonmetals
b. metalloids
d. metals
90. Which of the following is true about the electron configurations of the noble gases?
a. The highest occupied s and p sublevels are completely filled.
b. The highest occupied s and p sublevels are partially filled.
c. The electrons with the highest energy are in a d sublevel.
d. The electrons with the highest energy are in an f sublevel.
91. Elements that are characterized by the filling of p orbitals are classified as \qquad ..
a. groups 3A through 8A
c. inner transition metals
b. transition metals
d. groups 1A and 2A
92. Which subatomic particle plays the greatest part in determining the properties of an element?
a. proton
c. neutron
b. electron
d. none of the above
93. Which of the following groupings contains only representative elements?
a. $\mathrm{Cu}, \mathrm{Co}, \mathrm{Cd}$
c. $\mathrm{Al}, \mathrm{Mg}, \mathrm{Li}$
b. Ni, Fe, Zn
d. $\mathrm{Hg}, \mathrm{Cr}, \mathrm{Ag}$
94. Which of the following is true about the electron configurations of the representative elements?
a. The highest occupied s and p sublevels are completely filled.
b. The highest occupied s and p sublevels are partially filled.
c. The electrons with the highest energy are in a d sublevel.
d. The electrons with the highest energy are in an f sublevel.
95. What element in the second period has the largest atomic radius?
a. carbon
c. potassium
b. lithium
d. neon
96. Which of the following statements is true about ions?
a. Cations form when an atom gains electrons.
b. Cations form when an atom loses electrons.
c. Anions form when an atom gains protons.
d. Anions form when an atom loses protons.
97. In which of the following groups of ions are the charges all shown correctly?
a. $\mathrm{Li}^{-}, \mathrm{O}^{2-}, \mathrm{S}^{2+}$
b. $\mathrm{Ca}^{2+}, \mathrm{Al}^{3+}, \mathrm{Br}^{-}$
c. $\mathrm{K}^{2-}, \mathrm{F}^{-}, \mathrm{Mg}^{2+}$
d. $\mathrm{Na}^{+}, \mathrm{I}^{-}, \mathrm{Rb}^{-}$
98. For Group 2A metals, which electron is the most difficult to remove?
a. the first
b. the second
c. the third
d. All the electrons are equally difficult to remove.
99. Which of the following elements has the lowest electronegativity?
a. lithium
c. bromine
b. carbon
d. fluorine
\qquad 100. Which statement is true about electronegativity?
a. Electronegativity is the ability of an anion to attract another anion.
b. Electronegativity generally increases as you move from top to bottom within a group.
c. Electronegativity generally is higher for metals than for nonmetals.
d. Electronegativity generally increases from left to right across a period.
\qquad 101. Compared with the electronegativities of the elements on the left side of a period, the electronegativities of the elements on the right side of the same period tend to be \qquad _.
a. lower
c. the same
b. higher
d. unpredictable
\qquad 102. Which of the following statements correctly compares the relative size of an ion to its neutral atom?
a. The radius of an anion is greater than the radius of its neutral atom.
b. The radius of an anion is identical to the radius of its neutral atom.
c. The radius of a cation is greater than the radius of its neutral atom.
d. The radius of a cation is identical to the radius of its neutral atom.
\qquad 103. Which of the following factors contributes to the increase in ionization energy from left to right across a period?
a. an increase in the shielding effect
b. an increase in the size of the nucleus
c. an increase in the number of protons
d. fewer electrons in the highest occupied energy level
\qquad 104. How many valence electrons are in an atom of magnesium?
a. 2
b. 3
c. 4
d. 5
\qquad 105. How does calcium obey the octet rule when reacting to form compounds?
a. It gains electrons.
b. It gives up electrons.
c. It does not change its number of electrons.
d. Calcium does not obey the octet rule.
\qquad 106. What is the electron configuration of the calcium ion?
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} 4 s^{2}$
c. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 4 s^{1}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
\qquad 107. The octet rule states that, in chemical compounds, atoms tend to have \qquad .
a. the electron configuration of a noble gas
b. more protons than electrons
c. eight electrons in their principal energy level
d. more electrons than protons
\qquad 108. How many electrons does barium have to give up to achieve a noble-gas electron configuration?
a. 1
b. 2
c. 3
d. 4
\qquad 109. What is the formula of the ion formed when potassium achieves noble-gas electron configuration?
a. K^{2+}
b. K^{+}
c. K^{1-}
d. K^{2-}
\qquad 110. Which of the following elements does NOT form an ion with a charge of $1+$?
a. fluorine
c. potassium
b. hydrogen
d. sodium
\qquad 111. The electron configuration of a fluoride ion, F^{-}, is \qquad
a. $\quad 1 s^{2} 2 s^{2} 2 p^{5}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
b. the same as that of a neon atom
d. the same as that of a potassium ion
\qquad 112. A compound held together by ionic bonds is called a \qquad .
a. diatomic molecule
c. covalent molecule
b. polar compound
d. salt
\qquad 113. How many valence electrons are transferred from the nitrogen atom to potassium in the formation of the compound potassium nitride?
a. 0
b. 1
c. 2
d. 3
\qquad 114. How many valence electrons are transferred from the calcium atom to iodine in the formation of the compound calcium iodide?
a. 0
b. 1
c. 2
d. 3
\qquad 115. What is the formula unit of sodium nitride?
a. NaN
b. $\quad \mathrm{Na}_{2} \mathrm{~N}$
c. $\mathrm{Na}_{3} \mathrm{~N}$
d. NaN_{3}
\qquad 116. Ionic compounds are normally in which physical state at room temperature?
a. solid
c. gas
b. liquid
d. plasma
\qquad 117. Which of the following is true about the melting temperature of potassium chloride?
a. The melting temperature is relatively high.
b. The melting temperature is variable and unpredictable.
c. The melting temperature is relatively low.
d. Potassium chloride does not melt.
118. Under what conditions can potassium bromide conduct electricity?
a. only when melted
b. only when dissolved
c. only when it is in crystal form
d. only when melted or dissolved in water
119. An ionic bond is a bond between \qquad .
a. a cation and an anion
c. the ions of two different metals
b. valence electrons and cations
d. the ions of two different nonmetals
\qquad 120. How do atoms achieve noble-gas electron configurations in single covalent bonds?
a. One atom completely loses two electrons to the other atom in the bond.
b. Two atoms share two pairs of electrons.
c. Two atoms share two electrons.
d. Two atoms share one electron.
\qquad 121. Why do atoms share electrons in covalent bonds?
a. to become ions and attract each other
b. to attain a noble-gas electron configuration
c. to become more polar
d. to increase their atomic numbers
\qquad 122. Which noble gas has the same electron configuration as the oxygen in a water molecule?
a. helium
c. argon
b. neon
d. xenon
\qquad 123. Which of the following diatomic molecules is joined by a double covalent bond?
a. O_{2}
b. Cl_{2}
c. N_{2}
d. He_{2}
\qquad 124. An ionic compound is held together by what force?
a. electrostatic
c. intramolecular
b. intermolecular
d. electricity
\qquad 125. Which molecule will make a bent shape?
a. $\mathrm{H}_{2} \mathrm{~S}$
b. PCl_{3}
c. PCl_{5}
d. $\quad \mathrm{SF}_{6}$
\qquad 126. According to VSEPR theory, molecules adjust their shapes to keep which of the following as far apart as possible?
a. pairs of valence electrons
c. mobile electrons
b. inner shell electrons
d. the electrons closest to the nuclei
\qquad 127. The shape of the methane molecule is called \qquad
a. tetrahedral
c. four-cornered
b. square
d. planar
\qquad 128. What is the shape of HCN?
a. tetrahedral
c. bent
b. pyramidal
d. linear
\qquad 129. Which of the following covalent bonds is the most polar?
a. $\mathrm{H}-\mathrm{F}$
b. $\mathrm{H}-\mathrm{C}$
c. $\mathrm{H}-\mathrm{H}$
d. $\mathrm{H}-\mathrm{N}$
\qquad 130. What are the weakest attractions between molecules?
a. ionic forces
c. covalent forces
b. Van der Waals forces
d. hydrogen forces
\qquad 131. The noble gas configuration for Cerium is:
a. $\quad[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1}$
b. $\quad[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{1}$
c. $\quad[R n] 6 s^{2} 4 f^{1} 5 d^{1}$
d. $\quad[R n] 7 s^{2} 5 f^{1} 6 d^{1}$
\qquad 132. Choose the element that corresponds to the orbital diagram below:
(1) (ID (IDIDID (I) IDIDID (ID CIDDDD
a. Iron
c. Manganese
b. Chromium
d. Gallium
\qquad 133. What is the electron configuration of potassium?
a. $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 3 d^{1}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{2} 4 s^{1}$
c. $\quad 1 s^{2} 2 s^{2} 2 p^{10} 3 s^{2} 3 p^{3}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
134. Arrange the following elements: $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$, in order of increasing ionic size.
a. $\quad \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{S}^{2-}, \mathrm{P}^{3-}$
b. $\quad \mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$
c. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{P}^{3-}, \mathrm{S}^{2-}$
d. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{P}^{3-}$
\qquad 135. Arrange the following elements --- $\mathrm{Br}, \mathrm{As}, \mathrm{Kr}, \mathrm{Ge}, \mathrm{Ca}---$ in order of increasing ionization energy.
a. $\mathrm{Kr}, \mathrm{Ca}, \mathrm{Ge}, \mathrm{As}, \mathrm{Br}$
b. $\mathrm{Br}, \mathrm{As}, \mathrm{Ge}, \mathrm{Ca}, \mathrm{Kr}$
c. $\mathrm{Kr}, \mathrm{Br}, \mathrm{As}, \mathrm{Ge}, \mathrm{Ca}$
d. $\mathrm{Ca}, \mathrm{Ge}, \mathrm{As}, \mathrm{Br}, \mathrm{Kr}$
\qquad 136. Which ion, Aluminum of Sodium is smaller?
a. Sodium
c. both are the same size
b. Aluminum
d. not enough information
137.

$3 \mathrm{CuCl}_{2}+2 \mathrm{AI} \longrightarrow 2 \mathrm{AICl}_{3}+3 \mathrm{Cu}$

Choose the correct type of reaction.
a. double replacement
c. combination
b. single replacement
d. decomposition
\qquad 138.
$\ldots \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow$ Al $\mathbf{A l}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$
The reaction above can be properly balanced with which set of coefficients listed below?
a. $2,1,3,6$
b. $4,3,2,6$
c. $4,3,1,3$
d. $2,1,1,3$
e. $2,3,1,3$
139. Which of the following is the shape of $\mathrm{C}_{2} \mathrm{H}_{4}$?
a. Linear
c. Tetrahedral
b. Bent
d. Trigonal Planar
\qquad 140. Using the electron dot structure, what would a chlorine atom look like?
a.

b.

c.

d.

141. What intermolecular force holds together molecules of CO_{2} ?
a. Dispersion
c. Hydrogen Bonding
b. Dipole-Dipole
d. Ionic Bonding
\qquad 142. What particle is needed to complete the following nuclear equation?
${ }_{25}^{56} \mathrm{Mn} \rightarrow \ldots+{ }_{-1}^{0} \mathrm{e}$
a. $\quad{ }_{24}^{58} \mathrm{Cr}$
b. $\quad{ }_{27} \mathrm{Co}$
c. ${ }_{26}^{56} \mathrm{Fe}$
d. $\quad 27 \mathrm{Mn}$
\qquad 143. Of the following transitions in the Bohr hydrogen atom, the \qquad transition results in the emission of the highest-energy photon.
a. $\mathrm{n}=6 \rightarrow \mathrm{n}=4$
b. $\mathrm{n}=2 \rightarrow \mathrm{n}=7$
c. $\mathrm{n}=4 \rightarrow \mathrm{n}=6$
d. $\mathrm{n}=1 \rightarrow \mathrm{n}=4$
e. All transitions emit photons of equivalent energy.
144.

Radio and radar waves are examples of
a. low frequency and long wavelengths
c. low frequency and short wavelengths
b. high frequency and short wavelengths
d. high frequency and long wavelengths
145. Using the figure below, which radiation has the lowest frequency?

a. Gamma rays
b. X rays
c. Ultraviolet
d. Microwave

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
146. Which of the following molecules are nonpolar?
a. CHCl_{3}
b. SCl_{2}
c. HNO
d. F_{2}
e. CO_{2}
147. Which of the following molecules would have a high volatility?
a. NH_{3}
c. CCl_{4}
b. HF
d. $\mathrm{C}_{2} \mathrm{H}_{4}$
148. Which of the following molecules are polar?
a. NH_{3}
b. HF
c. CCl_{4}
d. HCOOH

Practice Final Exam- Fall 2015

Answer Section

MULTIPLE CHOICE

1. ANS: B OBJ: 2.1.1
2. ANS: D OBJ: 2.1.2
3. ANS: D OBJ: 2.1.2
4. ANS: B

OBJ: 2.1.3
5. ANS: C OBJ: 2.1.3
6. ANS: A OBJ: 2.1.3
7. ANS: C OBJ: 2.1.4
8. ANS: D

OBJ: 2.2.2
9. ANS: D OBJ: 2.2.3
10. ANS: D OBJ: 2.3.1
11. $\begin{aligned} & \text { ANS: } \\ & \text { OBJ: } \\ & \text { OBS: } \\ & \text { 1.1.4 } \\ & \text { 2.4.1 }\end{aligned}$ 2.4.2
12. ANS: B OBJ: 4.1.2
13. ANS: C OBJ: 4.2.1
14. ANS: A OBJ: 4.2.2
15. ANS: D OBJ: 4.3.1
16. ANS: B OBJ: 4.3.1
17. ANS: B OBJ: 4.3.1
18. ANS: A OBJ: 4.3.1
19. ANS: B OBJ: 4.3.1
20. ANS: C OBJ: 4.3.1
21. ANS: C OBJ: 4.3.1

PTS: 1
DIF: L1

DIF: L1

DIF: L2

DIF: L1

DIF: L1

DIF: L2
STA: Ch.2.d
PTS: 1
DIF: L2

PTS: 1

PTS: 1

PTS: 1

PTS: 1

PTS: 1
STA: Ch. 1
PTS: 1 DIF: L2
STA: Ch.1.e
PTS: 1
STA: Ch.1.a
PTS: 1 DIF: L1
STA: Ch.1.a|Ch.11.c
PTS: 1 DIF: L1
STA: Ch.1.a
PTS: 1 DIF: L1
STA: Ch.11.c
PTS: 1
STA: Ch.1.a
PTS: 1 DIF: L2
STA: Ch.11.c
PTS: 1 DIF: L3

REF: p. 39
REF: p. 40

REF: p. 40

REF: p. 41

REF: p. 41
REF: p. 41

REF: p. 42

REF: p. 45
REF: p. 46
REF: p. 48
REF: p. 54

REF: p. 102

REF: p. 106
REF: p. 107 | p. 108
REF: p. 111

REF: p. 111
REF: p. 110
REF: p. 112 | p. 113

REF: p. 111
REF: p. 112
REF: p. 112 | p. 113
22. ANS: B PTS: 1 DIF: L3

OBJ: 4.3.1|4.3.2 STA: Ch.11.c
23. ANS: D PTS: 1 OBJ: 4.3.3
24. ANS: B OBJ: 4.3.3
25. ANS: B OBJ: 9.1.1
26. ANS: C OBJ: 9.1.1
27. ANS: B

OBJ: 9.1.1
28. ANS: D

OBJ: 9.1.2
29. ANS: B OBJ: 9.2.1
30. ANS: A OBJ: 9.2.1
31. ANS: C OBJ: 9.2.2
32. ANS: B OBJ: 9.1.3|9.2.2
33. ANS: C

OBJ: 9.3.2
34. ANS: D

OBJ: 9.4.1
35. ANS: B

OBJ: 9.4.2
36. ANS: B

OBJ: 9.4.2
37. ANS: D

OBJ: 9.2.1|9.5.2
38. ANS: C

OBJ: 9.2.2|9.2.3|9.5.2
39. ANS: B PTS: 1

OBJ: 9.3.2|9.5.3 STA: Ch.2.b|Ch. 5
40. ANS: B OBJ: 11.1.2 STA: Ch.8.c
41. ANS: D

OBJ: 11.1.3
42. ANS: C OBJ: 11.1.3
43. ANS: C

OBJ: 11.1.3
44. ANS: B

OBJ: 11.2.1
45. ANS: B

OBJ: 11.2.1

PTS: 1
STA: Ch.1.a
PTS: 1
PTS: 1
STA: Ch. 3
PTS: 1
DIF: L2
STA: Ch.1.c|Ch.1.d
PTS: 1 DIF: L2
STA: Ch. 2
PTS: 1 DIF: L2
STA: Ch. 2
PTS: 1
STA: Ch. 2
PTS: 1
STA: Ch. 2
PTS: 1 DIF: L2
STA: Ch. 2
PTS: 1 DIF: L2
STA: Ch. 2
PTS: 1
STA: Ch. 5
PTS: 1 DIF: L2
STA: Ch. 5
PTS: 1 DIF: L2
STA: Ch. 5
PTS: 1
STA: Ch. 5
PTS: 1

STA: Ch.8.c
PTS: 1 DIF: L1
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L1
PTS: 1 DIF: L2
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L1
PTS: 1 DIF: L2
STA: Ch.3.a|Ch.3.e

REF: p. 111 | p. 112 | p. 113
REF: p. 114
REF: p. 115
REF: p. 254
REF: p. 254
REF: p. 254
REF: p. 257
REF: p. 262
REF: p. 262 | p. 263
REF: p. 257 | p. 261 | p. 262
REF: p. 264 | p. 265 | p. 266
REF: p. 269
REF: p. 272
REF: p. 272
REF: p. 272
REF: p. 261 | p. 262 | p. 277
REF: p. 257 | p. 264
REF: p. 269 | p. 277
REF: p. 323
REF: p. 324 | p. 325
REF: p. 325
REF: p. 324 | p. 325
REF: p. 333
REF: p. 332
46. ANS: C

OBJ: 11.2.1
47. ANS: A

OBJ: 11.2.1
48. ANS: C OBJ: 11.2.2
49. ANS: A

Exper. ST 1.F
PTS: 1
50. ANS: B

ST 1.A
PTS: 1
51. ANS: A

St. 1.A
PTS: 1
52. ANS: C

ST.1.B
PTS: 1
53. ANS: B

St. 1.E
ST. 1.H
PTS: 1
54. ANS: D

St. 11.A
PTS: 1
55. ANS: A

ST11.D
PTS: 1
56. ANS: A

PTS: 1
57. ANS: C

ST. 1.A
PTS: 1
58. ANS: C

Experiment 1.f
PTS: 1
59. ANS: C ST. 1.b

PTS: 1

PTS: 1 DIF: L2
REF: p. 334 | p. 335
PTS: 1
DIF: L2
REF: p. 336 | p. 337
STA: Ch.3.g
PTS: 1 DIF: L1
REF: p. 330 | p. 337
60. ANS: C

ST. 1E, 1H
PTS: 1
61. ANS: C

ST 1B
PTS: 1
62. ANS: A

ST 2A, 2B
PTS: 1
63. ANS: A

St 2A
PTS: 1
64. ANS: A

ST 2B
PTS: 1
65. ANS: C

EXP 1
ST1A
PTS: 1
66. ANS: B PTS: 1

DIF: 2
STA: 2a
KEY: Ionic Compound Recognition
67. ANS: C PTS: 1

DIF: 2
STA: 2a
TOP: Acid Identification
68. ANS: B PTS: 1
69. ANS: B PTS: 1

DIF: L2
DIF: L2
DIF: L2 REF: p. 131
71. ANS: B

OBJ: 5.1.4
72. ANS: C

OBJ: 5.2.1
73. ANS: C

OBJ: 5.2.1
74. ANS: D

OBJ: 5.2.1
75. ANS: C

OBJ: 5.2.1
76. ANS: A OBJ: 5.2.1
77. ANS: A

OBJ: 5.2.2

STA: Ch.1.i
PTS: 1
STA: Ch.1.g
PTS: 1
STA: Ch.1.g
PTS: 1
STA: Ch.1.g

DIF: L1
DIF: L2
DIF: L2
DIF: L2
DIF: L3
DIF: L1

REF: p. 131
REF: p. 131 | p. 132

REF: p. 134
REF: p. 131
REF: p. 133
REF: p. 134 | p. 135
REF: p. 133 | p. 134
REF: p. 136
78. ANS: A

OBJ: 5.2.2
79. ANS: C OBJ: 5.3.1
80. ANS: D OBJ: 5.3.1
81. ANS: D OBJ: 5.3.1
82. ANS: B

OBJ: 5.3.2
83. ANS: D

OBJ: 5.3.4
84. ANS: B OBJ: 5.3.4
85. ANS: B OBJ: 6.1.1
86. ANS: A OBJ: 6.1.1
87. ANS: C OBJ: 6.1.1
88. ANS: D

OBJ: 6.1.3
89. ANS: C

OBJ: 6.1.3
90. ANS: A

OBJ: 6.2.2
91. ANS: A

OBJ: 6.2.2
92. ANS: B

OBJ: 6.2.2
93. ANS: C

OBJ: 6.2.3
94. ANS: B

OBJ: 6.2.2|6.2.3
95. ANS: B

OBJ: 6.3.1
96. ANS: B

OBJ: 6.3.2
97. ANS: B

OBJ: 6.3.2
98. ANS: C

OBJ: 6.3.3
99. ANS: A OBJ: 6.3.3
100. ANS: D

OBJ: 6.3.3
101. ANS: B

OBJ: 6.3.3

PTS: 1
DIF: L3

DIF: L2

DIF: L2

DIF: L2

DIF: L2

DIF: L1

DIF: L1

DIF: L1

DIF: L2

DIF: L2

DIF: L2

DIF: L3

DIF: L2

DIF: L2

DIF: L2

DIF: L1

DIF: L2

DIF: L2

DIF: L2

DIF: L3

DIF: L2

DIF: L2

DIF: L2

DIF: L2

REF: p. 133 | p. 134 | p. 135 | p. 136
REF: p. 139
REF: p. 139

REF: p. 139

REF: p. 141

REF: p. 144
REF: p. 130
REF: p. 162 | p. 163

REF: p. 157
REF: p. 157

REF: p. 158

REF: p. 160

REF: p. 164
REF: p. 166

REF: p. 164

REF: p. 164 | p. 166

REF: p. 164

REF: p. 171

REF: p. 172

REF: p. 162 | p. 163 | p. 172
REF: p. 173

REF: p. 177

REF: p. 177

REF: p. 177 | p. 178

102.	ANS: A OBJ: 6.3.3	PTS: 1 STA: Ch.1.c	DIF:	L2	REF:	p. 172 \| p. 176
103.	ANS: C	PTS: 1	DIF:	L3	REF:	p. 174
	OBJ: 6.3.3	STA: Ch.1.c				
104.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 188
	OBJ: 7.1.1	STA: Ch.1.c\|	\| Ch.1.			
105.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 188
	OBJ: 7.1.1	STA: Ch.1.c\|				
106.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 188 \| p. 189
	OBJ: 7.1.1	STA: Ch.1.g				
107.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 188
	OBJ: 7.1.2	STA: Ch.2.a				
108.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 190
	OBJ: 7.1.3	STA: Ch.1.c\|	\| Ch.1			
109.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 190
	OBJ: 7.1.3	STA: Ch.3.a				
110.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 190
	OBJ: 7.1.3	STA: Ch.1.g				
111.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 192
	OBJ: 7.1.4	STA: Ch.1.g				
112.	ANS: D	PTS: 1	DIF:	L1	REF:	p. 194
	OBJ: 7.2.1	STA: Ch.2.a				
113.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 194
	OBJ: 7.2.1	STA: Ch.2.a				
114.	ANS: C	PTS: 1	DIF:	L2	REF:	p. 194
	OBJ: 7.2.1	STA: Ch.2.a				
115.	ANS: C	PTS: 1	DIF:	L2	REF:	p. 195
	OBJ: 7.2.1	STA: Ch.3.a				
116.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 196
	OBJ: 7.2.2	STA: Ch.2.a				
117.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 196
	OBJ: 7.2.2	STA: Ch.5.a				
118.	ANS: D	PTS: 1	DIF:	L1	REF:	p. 198
	OBJ: 7.2.2	STA: Ch.5.a				
119.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 201
	OBJ: 7.2.1\|7.3.1	STA: Ch.2.a				
120.	ANS: C	PTS: 1	DIF:	L2	REF:	p. 217
	OBJ: 8.2.1	STA: Ch.2.a				
121.	ANS: B	PTS: 1	DIF:	L2	REF:	p. 217
	OBJ: 8.2.1	STA: Ch.2.a				
122.	ANS: B	PTS: 1	DIF:	L2	REF:	p. 218
	OBJ: 8.2.1	STA: Ch.1.g				
123.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 221
	OBJ: 8.2.3	STA: Ch.2.a				
124.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 223
	OBJ: 8.2.4	STA: Ch.2.a				
125.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 229
	OBJ: 8.2.7	STA: Ch.2.a				

126. ANS: A OBJ: 8.3.2
127. ANS: A OBJ: 8.3.2
128. ANS: D OBJ: 8.3.3
129. ANS: A OBJ: 8.4.1
130. ANS: B OBJ: 8.4.3
131. ANS: A
132. ANS: A
133. ANS: D OBJ: 5.2.1
134. ANS: D
135. ANS: D
136. ANS: B
137. ANS: B
138. ANS: E
139. ANS: D
140. ANS: A
141. ANS: A
142. ANS: C OBJ: 25.2.1
143. ANS: A OBJ: 6.3; G2
144. ANS: A
145. ANS: D OBJ: EK.1.D. 3

PTS: 1
DIF: L1
DIF: L1
DIF: L2
DIF: L3

DIF: L1
STA: Ch.2.a|Ch.2.h
PTS: 1
PTS: 1
PTS: 1
STA: Ch.1.g
PTS: 1
PTS: 1
PTS: 1
PTS: 1 STA: 3e
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
STA: Ch.11.d
PTS: 1
PTS: 1
PTS: 1
DIF: L2

REF: p. 232
REF: p. 232
REF: p. 235
REF: p. 238 | p. 239
REF: p. 240

REF: p. 133 | p. 134 | p. 135

REF: p. 803 | p. 804
REF: Page Ref: 6.3

REF: Section: 7.1

MULTIPLE RESPONSE

PTS: 1
PTS: 1
PTS: 1
146. ANS: D, E
147. ANS: C, D
148. ANS: A, B

