Practice Final Exam- Fall 2015

Multiple Choice

Identify the choice that best completes the statement or answers the question. *Final exam is 20% of your grade. Your final will be very heavy on ch 4,25,5-9 and 11. * You need your own cacluclator, pencil. *You cannot exchange calculators with your teacher.

 1.	Which of the following is NOT an example of	matt	er?
	a. air	c.	smoke
	b. heat	d.	water vapor
 2.	All of the following are physical properties of	matte	er EXCEPT
	a. mass	c.	melting point
	b. color	d.	ability to rust
3.	Which of the following are considered physica	l pro	perties of a substance?
	a. color and odor	c.	malleability and hardness
	b. melting and boiling points	d.	all of the above
4.	Which state of matter has a definite volume an	d tak	es the shape of its container?
	a. solid	c.	gas
	b. liquid	d.	both b and c
5.	Which state of matter is characterized by having	ng a c	lefinite shape and a definite volume?
	a. gas	с.	solid
	b. liquid	d.	all of the above
6.	All of the following are physical properties of	a sub	stance in the liquid state EXCEPT .
	a. indefinite volume	c.	not easily compressed
	b. definite mass	d.	indefinite shape
7.	Which of the following is a physical change?		-
	a. corrosion	c.	evaporation
	b. explosion	d.	rotting of food
 8.	Which of the following is a heterogeneous mix	ture	?
	a. air	c.	steel
	b. salt water	d.	soil
 9.	Separating a solid from a liquid by evaporating	g the	liquid is called
	a. filtration	c.	solution
	b. condensation	d.	distillation
 10.	A substance that can be separated into two or r	nore	substances only by a chemical change is a(n)
	a. solution	c.	mixture
	b. element	d.	compound
 11.	Which of the following indicates that a chemic	al ch	ange has happened during cooking?
	a. The food darkens.		
	b. Bubbles form in boiling water.		
	c. Butter melts.		
	d. Energy is transferred from the stove to a p	an.	

12.	Which of the following is NOT a part of Dalton's atomic theory?
	a. All elements are composed of atoms.
	b. Atoms are always in motion.c. Atoms of the same element are identical.
	c. Atoms of the same element are identical.d. Atoms that combine do so in simple whole-number ratios.
13.	•
15.	a. positively charged, with the number of protons exceeding the number of electrons
	b. negatively charged, with the number of electrons exceeding the number of protons
	c. neutral, with the number of protons equaling the number of electrons
	d. neutral, with the number of protons equaling the number of electrons, which is equal to
	the number of neutrons
14.	The nucleus of an atom is
	a. the central core and is composed of protons and neutronsb. positively charged and has more protons than neutrons
	c. negatively charged and has a high density
	d. negatively charged and has a low density
15.	The sum of the protons and neutrons in an atom equals the
	a. atomic number c. atomic mass
	b. nucleus number d. mass number
16.	What does the number 84 in the name krypton-84 represent?
	a. the atomic numberb. the mass numberc. the sum of the protons and electronsd. twice the number of protons
17.	
17.	a. number of neutrons c. mass numbers
	b. number of protons d. mass
18.	Isotopes of the same element have different
	a. numbers of neutrons c. numbers of electrons
	b. numbers of protons d. atomic numbers
19.	The mass number of an element is equal to a. the total number of electrons in the nucleus
	a. the total number of electrons in the nucleusb. the total number of protons and neutrons in the nucleus
	c. less than twice the atomic number
	d. a constant number for the lighter elements
20.	If E is the symbol for an element, which two of the following symbols represent isotopes of the same
	element?
	1. ${}^{20}_{10}E$ 2. ${}^{20}_{11}E$ 3. ${}^{21}_{9}E$ 4. ${}^{21}_{10}E$
	a. 1 and 2 c. 1 and 4 b. 3 and 4 d. 2 and 3
21	
21.	
	a. ${}^{91}_{42}J$ ${}^{92}_{42}J$ ${}^{93}_{40}J$ c. ${}^{84}_{38}M$ ${}^{86}_{38}M$ ${}^{87}_{38}M$
	b. ${}^{50}_{19}L$ ${}^{50}_{20}L$ ${}^{50}_{21}L$ d. ${}^{138}_{59}Q$ ${}^{133}_{55}Q$ ${}^{133}_{54}Q$
22.	How do the isotopes hydrogen-1 and hydrogen-2 differ?
	a. Hydrogen-2 has one more electron than hydrogen-1.
	b. Hydrogen-2 has one neutron; hydrogen-1 has none.
	c. Hydrogen-2 has two protons; hydrogen-1 has one.d. Hydrogen-2 has one proton; hydrogen-1 has none.

Name:

23. Which of the following equals one atomic mass unit? the mass of one electron a. the mass of one helium-4 atom b. the mass of one carbon-12 atom c. one-twelfth the mass of one carbon-12 atom d. The atomic mass of an element is the 24. total number of subatomic particles in its nucleus a. weighted average of the masses of the isotopes of the element b. total mass of the isotopes of the element c. average of the mass number and the atomic number for the element d. 25. What type of ions have names ending in *-ide*? a. only cations c. only metal ions only anions only gaseous ions b. d. 26. What is the correct name for the N^{3-} ion? nitrate ion nitride ion a. C. nitrite ion b. nitrogen ion d. 27. The nonmetals in Groups 6A and 7A lose electrons when they form ions a. have a numerical charge that is found by subtracting 8 from the group number b. c. all have ions with a ⁻¹ charge end in -ate d. 28. An *-ate* or *-ite* at the end of a compound name usually indicates that the compound contains _____. a. fewer electrons than protons c. only two elements neutral molecules a polyatomic anion b. d. 29. Which of the following formulas represents an ionic compound? CS₂ с. N_2O_4 a. b. Bal₂ d. PCl₃ 30. Which of the following compounds contains the lead(II) ion? PbO Pb₂O a. c. Pb₂S b. PbCl₄ d. 31. What is the correct formula for potassium sulfite? K₂SO₃ a. KHSO₃ c. KHSO₄ K_2SO_4 d. b. 32. Which set of chemical name and chemical formula for the same compound is correct? ammonium sulfite, $(NH_4)_2S$ c. lithium carbonate, LiCO₃ a. iron(III) phosphate, FePO₄ magnesium dichromate, $MgCrO_{4}$ d. b. 33. Which of the following formulas represents a molecular compound? ZnO SO₂ a. c. Xe BeF, b. d. 34. What is the name of H_2SO_3 ? hyposulfuric acid sulfuric acid a. с. b. hydrosulfuric acid d. sulfurous acid

 35.	What is the formula for sulfurous acid? a. H_2SO_4	c.	H ₂ SO ₂
	b. H_2SO_4	с. d.	H_2SO_2 H_2S
36.	What is the formula for phosphoric acid?	c.	2~
 50.	a. H_2PO_3	c.	HPO ₂
	b. H_3PO_4	d.	HPO ₄
 37.	What is the correct name for the compound Co	\mathbf{Cl}_2 ?	, ,
	a. cobalt(I) chlorate	c.	cobalt(II) chlorate
20	b. cobalt(I) chloride	d.	cobalt(II) chloride
 38.	What is the correct formula for barium chlorate a. $Ba(CIO)_2$	е? с.	$Ba(ClO_3)_2$
	b. $Ba(ClO_2)_2$	d.	BaCl ₂
 39.	Which of the following is the correct name for	N_2C	D ₅ ?
	a. nitrous oxide	c.	nitrogen dioxide
	b. dinitrogen pentoxide	d.	nitrate oxide
 40.	· · · · · · · · · · · · · · · · · · ·		
	a. the product of a combustion reactionb. not used up in a reaction		
	c. one of the reactants in single-replacement	react	tions
	d. a solid product of a reaction		
 41.	What are the coefficients that will balance the $N_2 + H_2 \rightarrow NH_3$	skele	eton equation below?
	a. 1, 1, 2	c.	3, 1, 2
	b. 1, 3, 3		1, 3, 2
 42.	Chemical equations must be balanced to satisf	-	
	a. the law of definite proportionsb. the law of multiple proportions	c. d.	the law of conservation of mass Avogadro's principle
43.	b. the law of multiple proportionsWhat are the missing coefficients for the skele		
 τ.	$Cr(s) + Fe(NO_3)_2(aq) \rightarrow Fe(s) + Cr(NO_3)_3(aq)$		
	a. 4, 6, 6, 2	c.	2, 3, 3, 2
	b. 2, 3, 2, 3	d.	1, 3, 3, 1
 44.	Classify the type of reaction $2Al + 6HCl \rightarrow 2A$	AICl ₃	$_{3} + 3H_{2}$.
	a. double replacement		
	b. single replacementc. decomposition		
	d. combustion		
 45.	Which of the following is a balanced equation	repre	
	a. $PbO_2 \rightarrow Pb + 2O$	c.	$Pb_2O \rightarrow 2Pb + O$
	b. $PbO_2 \rightarrow Pb + O_2$	d.	$PbO \rightarrow Pb + O_2$

Name:

- 46. In a double-replacement reaction the reactants are usually: a. one compound b. single element and one compound c. two compounds d. hydrocarbon and oxygen 47. The complete combustion of which of the following substances produces carbon dioxide and water? a. $C_8 H_{18}$ c. CaHCO₃ b. K_2CO_3 NO d. 48. The reaction $2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$ is an example of which type of reaction? combustion reaction combination reaction c. a. single-replacement reaction b. d. decomposition reaction 49. Matter is made of atoms that have positive centers of neutrons and protons surrounded by a cloud of negatively charged electrons. This statement is a theory. an inference. a. с. a hypothesis. d. an observation. b. 50. A metallic oxide mixed with water will produce what type of compound? a. acid b. base 51. Why is cobalt (Co) placed before nickel (Ni) on the periodic table of the elements even though it has a higher average atomic mass than nickel? a. Nickel has one more proton. Nickel has fewer electrons. c. Cobalt was discovered first. b. d. Cobalt has a lower density. 52. Periodic Table of the Elements
 - Cl Mn Te I Xe

Iodine would have chemical properties most like

manganese (Mn) a.

chlorine (Cl). с.

b.

d. xenon (Xe).

tellurium (Te)

Name:

53.

Results of Firing Alpha Particles at Gold Foil

Observation:	Proportion:
Alpha particles went straight through gold foil.	> 98%
Alpha particles went through gold foil but were deflected at large angles.	≈ 2%
Alpha particles bounced off gold foil.	≈ 0.01%

What information do the experimental results above reveal about the nucleus of the gold atom?

d.

- The nucleus contains less than half the a. mass of the atom.
- The nucleus contains small positive and c. negative particles. The nucleus is large and occupies most of
- The nucleus is small and is the densest b. part of the atom.
- 54. Why are enormous amounts of energy required to separate a nucleus into its component protons and neutrons even though the protons in the nucleus repel each other?

the atom's space.

- a. The force of the protons repelling each other is small compared to the attraction of the neutrons to each other.
- b. The electrostatic forces acting between other atoms lowers the force of repulsion of the protons.
- c. The interactions between neutrons and electrons neutralize the repulsive forces between the protons.
- d. The forces holding the nucleus together are much stronger than the repulsion between the protons.

55.

Which equation correctly represents the alpha decay of polonium-214?

^A

$$214_{84}Po \rightarrow 214_{85}Po + 0_{-1}e$$

^B
 $214_{Po} + 2_{Ho} \rightarrow 216_{Th}$

$$^{-}_{84}$$
Po + $^{-}_{4}$ He $\rightarrow ^{-}_{90}$ Th

$$^{214}_{84}$$
Po $\rightarrow ^{210}_{82}$ Pb + $^{4}_{2}$ He

С

$$^{214}_{84}$$
Po $\rightarrow ^{214}_{82}$ Pb + $^{0}_{2}$ He

a. A b. B c. C d. D

- 56. A 2-cm-thick piece of cardboard placed over a radiation source would be *most* effective in protecting against which type of radiation?
 - a. alpha c. gamma
 - b. beta d. x-ray

____ 57. All atoms are ____

- a. positively charged, with the number of protons exceeding the number of electrons
- neutral, with the number of protons equaling the number of neutrons, which is equal to half the number of electrons negatively charged.
- c. neutral, with the number of protons equaling the number of electrons
- d. neutral, with the number of electrons equally the number of neutrons.

- 58. Two science students discovered that the mass of a sample of acetone in an open beaker decreased within a few minutes. One student hypothesized that the acetone reacted with oxygen to form a gaseous compound that escaped. The other student believed that the acetone evaporated. What should the students do to test the hypothesis?
 - combine the hypothesis so they give a. valid predictions
- c. perform an experiment that attempts to identify the gas above the open beaker
- conduct a study of original papers b. describing the experiments leading to acetone's discovery
- ask a classmate's opinion about the d. chemical and physical properties of acetone

The illustration below shows the gold-foil experiment conducted by Ernest Rutherford. According to the drawing, most of the positively charged particles that were "shot" at the foil went straight through the gold foil without changing course. After analyzing the results of this test, Rutherford concluded that

atoms are completely solid. a.

b.

- an atom has a solid, positively charge C. nucleus surrounded by electrons.
- atoms are made up of positive and d. gold atoms are more loosely packed than negative charges all mixed together. most other metal atoms.
- Which of the following is a monatomic gas at STP? 61.
 - Chlorine a. c.
 - Florine b.
- Helium
- Nitrogen d.

- 62. A nonmetallic oxide mixed with water will produce what type of compound? base acid a. b.
- 63. When cation and anion join, they form what kind of chemical bond?
 - c. Molecular

c.

Ionic b. Hydrogen

a.

d. Metallic

Table of Common Molecules						
Name	Hydrogen	Chlorine	Ammonia	Methane		
Molecular Formula	H ₂	Cl ₂	NH3	CH ₄		

- 64.
- What type of bond to all of these compounds have in common?
- Covalent a.
- metallic b. ionic d.
- 65.

hydrogen

The	picture is a model for which element?
-	

	a. Carbon	с.	Beryllium
	b. Florine	d.	Nitrogen
 66.	Which compound represents an ionic comp	pound?	
	a. SF_6	с.	F_2
	b. NaHCO ₃	d.	CH_4
 67.	Which of the following compounds is an a	cid?	
	a. H ₂ O	c.	H_2SO_4
	b. NH ₃	d.	LiH
68.	$C_3H_8 + O_2 \longrightarrow CO_2 + H_2O_2$		
	This chemical equation represents the co	ombustic	on of propar

pane. When correctly balanced, the coefficient for water is

- 2 8 a. с. b. 4 d. 16 69. How many energy sublevels are in the second principal energy level?
 - a. 1 c. 3 b. 2 4 d.

70	0. What is the maximum number of f orbitals in any sir	
	a. 1 c. b. 3 d.	5 7
71		
		principle energy level
70	*	speed of an electron what is the spin of the other electron in that orbital?
72	1	counterclockwise
		both clockwise and counterclockwise
73		al energy level?
		s, p, and d only
-	•	<i>s</i> , <i>p</i> , <i>d</i> , and <i>f</i>
74	 What is the next atomic orbital in the series 1s, 2s, 2 a. 2d c. 	p, 3s, 3p? 3f
		4s
75	5. What is the number of electrons in the outermost end	ergy level of an oxygen atom?
	a. 2 c.	6
		8
76		
		3 4
77		
, ,	a. filled energy sublevels	
	b. fewer electrons than unstable configurations	
	c. unfilled <i>s</i> orbitals	
78	d. electrons with a clockwise spin8. Which of the following electron configurations of out	iter sublevels is the most stable?
/0	• •	$4d^35s^3$
		$4d^25s^4$
79		e speed of gamma rays, when both speeds are measured
//	in a vacuum?	
	a. The speed of visible light is greater.	
	b. The speed of gamma rays is greater.	
	c. The speeds are the same.d. No answer can be determined from the informat	tion given.
80		C C
	C	blue
	b. green d.	violet
81	1. Which type of electromagnetic radiation includes the	
		radio wave
00		visible light
82		of a single wavelength
	-	white light
83		
		muons
	b. excitons d.	photons

 84.	Which scientist developed the quantum mech	nanica	l model of the atom?
	a. Albert Einstein	с.	Niels Bohr
	b. Erwin Schrodinger	d.	Ernest Rutherford
 85.	Which of the following elements is in the sam	ne per	iod as phosphorus?
	a. carbon	с.	nitrogen
	b. magnesium	d.	oxygen
 86.	Each period in the periodic table corresponds	s to	
	a. a principal energy level	с.	
	b. an energy sublevel	d.	a suborbital
 87.	The modern periodic table is arranged in orde	er of i	ncreasing atomic
	a. mass	c.	number
	b. charge	d.	radius
 88.	Of the elements Pt, V, Li, and Kr, which is a	nonm	etal?
	a. Pt	c.	Li
	b. V	d.	Kr
 89.	To what category of elements does an element	nt belo	ong if it is a poor conductor of electricity?
	a. transition elements	с.	nonmetals
	b. metalloids	d.	metals
 90.	Which of the following is true about the elect	tron co	onfigurations of the noble gases?
	a. The highest occupied s and p sublevels a	are con	npletely filled.
	b. The highest occupied <i>s</i> and <i>p</i> sublevels a	are pai	tially filled.
	c. The electrons with the highest energy are		
	d. The electrons with the highest energy are	e in ar	n f sublevel.
 91.	Elements that are characterized by the filling	of p of	orbitals are classified as
	a. groups 3A through 8A	c.	inner transition metals
	b. transition metals	d.	groups 1A and 2A
 92.	Which subatomic particle plays the greatest p	oart in	determining the properties of an element?
	a. proton	c.	neutron
	b. electron	d.	none of the above
93.	Which of the following groupings contains or	nly re	presentative elements?
	a. Cu, Co, Cd	с.	
	b. Ni, Fe, Zn	d.	Hg, Cr, Ag
94.	Which of the following is true about the elect	tron co	onfigurations of the representative elements?
	a. The highest occupied s and p sublevels a		
	b. The highest occupied s and p sublevels a		- ·
	c. The electrons with the highest energy are	_	÷
	d. The electrons with the highest energy are	e in ar	n f sublevel.
95.	What element in the second period has the land	rgest a	atomic radius?
	a. carbon	с.	potassium
	b. lithium	d.	neon
96.	Which of the following statements is true abo	out ior	ns?
	a. Cations form when an atom gains electro		
	b. Cations form when an atom loses electro		
	c. Anions form when an atom gains proton	s.	
	d. Anions form when an atom loses protons		
	1		

_____97. In which of the following groups of ions are the charges all shown correctly?

- a. Li^{-}, O^{2-}, S^{2+} c. K^{2-}, F^{-}, Mg^{2+}
- b. Ca^{2+}, Al^{3+}, Br^{-} d. Na^{+}, I^{-}, Rb^{-}
- _ 98. For Group 2A metals, which electron is the most difficult to remove?
 - a. the first
 - b. the second
 - c. the third
 - d. All the electrons are equally difficult to remove.
- 99. Which of the following elements has the lowest electronegativity?
 - a. lithium c. bromine
 - b. carbon d. fluorine
- _____ 100. Which statement is true about electronegativity?
 - a. Electronegativity is the ability of an anion to attract another anion.
 - b. Electronegativity generally increases as you move from top to bottom within a group.
 - c. Electronegativity generally is higher for metals than for nonmetals.
 - d. Electronegativity generally increases from left to right across a period.

101. Compared with the electronegativities of the elements on the left side of a period, the electronegativities of the elements on the right side of the same period tend to be _____.

- a. lower c. the same
- b. higher d. unpredictable
- _____ 102. Which of the following statements correctly compares the relative size of an ion to its neutral atom?
 - a. The radius of an anion is greater than the radius of its neutral atom.
 - b. The radius of an anion is identical to the radius of its neutral atom.
 - c. The radius of a cation is greater than the radius of its neutral atom.
 - d. The radius of a cation is identical to the radius of its neutral atom.
- _____ 103. Which of the following factors contributes to the increase in ionization energy from left to right across a period?
 - a. an increase in the shielding effect
 - b. an increase in the size of the nucleus
 - c. an increase in the number of protons
 - d. fewer electrons in the highest occupied energy level
- 104. How many valence electrons are in an atom of magnesium?
 - a. 2 c. 4 b. 3 d. 5
- _____ 105. How does calcium obey the octet rule when reacting to form compounds?
 - a. It gains electrons.
 - b. It gives up electrons.
 - c. It does not change its number of electrons.
 - d. Calcium does not obey the octet rule.
- <u>106.</u> What is the electron configuration of the calcium ion?

a. $1s^2 2s^2 2p^6 3s^2 3p^6$ c. $1s^2 2s^2 2p^6 3s^2 3p^5 4s^4$

- b. $1s^2 2s^2 2p^6 3s^2 3p^4 4s^2$ d. $1s^2 2s^2 2p^6 3s^2$
- _____ 107. The octet rule states that, in chemical compounds, atoms tend to have _____.
 - a. the electron configuration of a noble gas
 - b. more protons than electrons
 - c. eight electrons in their principal energy level
 - d. more electrons than protons

a. 1 c. 3 b. 2 d. 4 109. What is the formula of the ion formed when potassium achieves noble-gas electron configuration a. K^{2+} c. K^{1-} b. K^{+} d. K^{2-} 110. Which of the following elements does NOT form an ion with a charge of 1+? a. fluorine c. potassium b. hydrogen d. sodium 111. The electron configuration of a fluoride ion, F^- , is	,
 109. What is the formula of the ion formed when potassium achieves noble-gas electron configuration. a. K²⁺ b. K⁺ c. K¹⁻ b. K⁺ d. K²⁻ 110. Which of the following elements does NOT form an ion with a charge of 1+? a. fluorine b. hydrogen c. potassium d. sodium 	,
a. K^{2+} c. K^{1-} b. K^+ d. K^{2-} 110. Which of the following elements does NOT form an ion with a charge of 1+? a. fluorine c. potassium b. hydrogen d. sodium 111. The electron configuration of a fluoride ion, F^- , is	
 b. K⁺ d. K²⁻ 110. Which of the following elements does NOT form an ion with a charge of 1+? a. fluorine b. hydrogen c. potassium d. sodium 	
 110. Which of the following elements does NOT form an ion with a charge of 1+? a. fluorine b. hydrogen c. potassium d. sodium 	
a. fluorine c. potassium b. hydrogen d. sodium 111. The electron configuration of a fluoride ion, F ⁻ , is	
b. hydrogen d. sodium 111. The electron configuration of a fluoride ion, F ⁻ , is	
111. The electron configuration of a fluoride ion, F^- , is	
a. $1s^2 2s^2 2p^5$ c. $1s^2 2s^2 2p^6 3s^1$	
b. the same as that of a neon atom d. the same as that of a potassium ion	
112. A compound held together by ionic bonds is called a	
a. diatomic molecule c. covalent molecule	
b. polar compound d. salt 113. How many valence electrons are transferred from the nitrogen atom to potassium in the formation	of the
compound potassium nitride?	of the
a. 0 c. 2	
b. 1 d. 3	
114. How many valence electrons are transferred from the calcium atom to iodine in the formation of t	ne
compound calcium iodide?	
a. 0 c. 2 b. 1 d. 3	
115. What is the formula unit of sodium nitride?	
a. NaN c. Na ₃ N	
b. Na_2N d. NaN_3	
116. Ionic compounds are normally in which physical state at room temperature? a. solid c. gas	
b. liquid d. plasma	
117. Which of the following is true about the melting temperature of potassium chloride?	
a. The melting temperature is relatively high.	
b. The melting temperature is variable and unpredictable.	
c. The melting temperature is relatively low.	
d. Potassium chloride does not melt.	
118. Under what conditions can potassium bromide conduct electricity? a. only when melted	
b. only when dissolved	
c. only when it is in crystal form	
d. only when melted or dissolved in water	
119. An ionic bond is a bond between	
a. a cation and an anion c. the ions of two different metals	
b. valence electrons and cations d. the ions of two different nonmetals	

120.	How do atoms achieve noble-gas electron conf	ïgura	ations in single covalent bonds?
	a. One atom completely loses two electrons t	to the	e other atom in the bond.
	b. Two atoms share two pairs of electrons.		
	c. Two atoms share two electrons.		
	d. Two atoms share one electron.		
121.	Why do atoms share electrons in covalent bond	ls?	
	a. to become ions and attract each other		
	b. to attain a noble-gas electron configuration	1	
	c. to become more polard. to increase their atomic numbers		
100			······································
122.	Which noble gas has the same electron configu a. helium		
	a. helium b. neon	c. d.	argon xenon
123.	Which of the following diatomic molecules is j		
123.	a. O_2		N_2
	2		2
	b. Cl ₂	d.	He ₂
124.	1 0 1	orce?	
	a. electrostatic	c.	intramolecular
	b. intermolecular	d.	electricity
125.	Which molecule will make a bent shape?		
	a. H ₂ S	c.	PCl ₅
	b. PCl ₃	d.	SF ₆
126.		their	r shapes to keep which of the following as far apart as
	possible?		
	a. pairs of valence electrons	с.	mobile electrons
105	b. inner shell electrons	d.	the electrons closest to the nuclei
127.	The shape of the methane molecule is called	<u> </u>	C 1
	a. tetrahedral	C.	four-cornered
100	b. square	d.	planar
128.	What is the shape of HCN? a. tetrahedral		hant
		c. d.	bent linear
120			
129.	Which of the following covalent bonds is the n a. H—F		H—H
	b. H—C	d.	H—N
130.	What are the weakest attractions between mole		
150.	a. ionic forces	Cuic C.	covalent forces
	b. Van der Waals forces	d.	hydrogen forces
131.	The <u>noble gas configuration</u> for Cerium is:		
151.	a. $[Xe] 6s^2 4f^1 5d^1$	c.	$[Rn] 6s^2 4f^1 5d^1$
	b. $[Xe] 6s^2 4f^1$	d.	[Rn] $7s^2 5f^1 6d^1$
132.			
132.		<u> </u>	
THE THAT IN THAT IN THAT IN			
	a. Iron	c.	Manganese
	b. Chromium	d.	Gallium

122	What is the electron configuration of notoosium	- 9		
133.	What is the electron configuration of potassium $1^{2}2^{2}2^{2}2^{6}2^{1}$		$1s^2 2s^2 2p^{10} 3s^2 3p^3$	
	a. $1s^2 2s^2 3s^2 3p^6 3d^1$		1 1	
	b. $1s^22s^22p^23s^23p^24s^1$		$1s^22s^22p^63s^23p^64s^1$	
134.	Arrange the following elements: P^{3-} , S^{2-} , k			
			$Sc^{3+}, Ca^{2+}, K^+, P^{3-}, S^{2-}$	
	b. P^{3-} , S^{2-} , K^+ , Ca^{2+} , Sc^{3+}		Sc ³⁺ , Ca ²⁺ , K ⁺ , S ²⁻ , P ³⁻	
135.	Arrange the following elementsBr, As, Kr,		÷	
	a. Kr, Ca, Ge, As, Brb. Br, As, Ge, Ca, Kr		Kr, Br, As, Ge, Ca Ca, Ge, As, Br, Kr	
136	Which ion, Aluminum of Sodium is smaller?	u.	Cu, OC, 715, DI, M	
150.	a. Sodium	c.	both are the same size	
	b. Aluminum	d.	not enough information	
	3CuCl ₂ + 2AI → 2AICl ₃ +	3C		
137.	-		-	
	Choose the correct type of reaction.		combination	
	a. double replacementb. single replacement	c. d.	decomposition	
138	$Al + CuSO_4 \rightarrow Al_2(SO_4)_3 + CuSO_4 \rightarrow Cl_2(SO_4)_3 + Cl_2(SO_4)_$		decomposition	
150.	$\underline{} \mathbf{A} \mathbf{I} \mathbf{I} \underline{} \mathbf{C} \mathbf{U} \mathbf{S} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \underline{} \mathbf{C} \mathbf{I} \mathbf{S} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \underline{} \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	u		
	The reaction above can be properly balanced with which set of coefficients listed below?			
	a. 2, 1, 3, 6		2, 1, 1, 3	
	b. 4, 3, 2, 6		2, 3, 1, 3	
	c. 4, 3, 1, 3			
139.	Which of the following is the shape of C_2H_4 ?			
	a. Linear	c.	Tetrahedral	
	b. Bent	d.	Trigonal Planar	
140.	Using the electron dot structure, what would a	chlo	rine atom look like?	
	•••			
	a.	c.		
	••	•••		
		A		
141.	b. •• What intermolecular force holds together mole	d.	a of CO 2	
141.	a. Dispersion	cule:	Hydrogen Bonding	
	b. Dipole-Dipole	d.	Ionic Bonding	
142.	What particle is needed to complete the fol		0	
112.	$56 \atop{25}$ Mn \rightarrow + $\frac{0}{-1}$ e	10 11	ing nuclear equation.	
	$25^{\text{IVIII}} \rightarrow \underline{\qquad}^+ -1^{\text{e}}$			
	a. $\frac{58}{24}$ Cr	c.	⁵⁶ Fe 26 ^{Fe}	
	24		26	
	b. $\frac{56}{27}$ Co	d.	27 25 ^{Mn}	
	<i>∠1</i>		23	

143. Of the following transitions in the Bohr hydrogen atom, the ______ transition results in the emission of the highest-energy photon.

a. $n = 6 \rightarrow n = 4$ b. $n = 2 \rightarrow n = 7$ c. $n = 4 \rightarrow n = 6$ d. $n = 1 \rightarrow n = 4$

e. All transitions emit photons of equivalent energy.

Radio and radar waves are examples of

- a. low frequency and long wavelengths c. low frequency and short wavelengths
- b. high frequency and short wavelengths d. high frequency and long wavelengths

_ 145. Using the figure below, which radiation has the lowest frequency?

d. Microwave

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

146.	Which of the following molecules are nonpole	ar?	
	a. CHCl ₃	d.	F_2
	b. SCl_2	e.	CO_2
	c. HNO		
147.	Which of the following molecules would have	e a hig	gh volatility?
	a. NH ₃	c.	CCl ₄
	b. HF	d.	C_2H_4
148.	Which of the following molecules are polar?		
	a. NH_3	c.	CCl ₄
	b. HF	d.	HCOOH

Practice Final Exam- Fall 2015 Answer Section

MULTIPLE CHOICE

1.		B 2.1.1	PTS:	1	DIF:	L1	REF:	p. 39
2.		D	PTS:	1	DIF:	L1	REF:	p. 40
3.	ANS: OBJ:	D	PTS:	1	DIF:	L2	REF:	p. 40
4.	ANS:			1 Ch.2.d	DIF:	L1	REF:	p. 41
5.	ANS: OBJ:	С	PTS:		DIF:	L1	REF:	p. 41
6.	ANS:				DIF:	L2	REF:	p. 41
7.	ANS: OBJ:	С	PTS:		DIF:	L2	REF:	p. 42
8.	ANS: OBJ:		PTS:	1	DIF:	L1	REF:	p. 45
9.	ANS: OBJ:		PTS:	1	DIF:	L2	REF:	p. 46
10.	ANS: OBJ:		PTS:	1	DIF:	L2	REF:	p. 48
	OBJ:	A 2.1.4 2.4.1 2	2.4.2			L2	REF:	p. 54
	OBJ:		PTS:	1		L2	REF:	p. 102
		4.2.1	STA:	Ch.1		L3		p. 106
		4.2.2		Ch.1.e		L2		p. 107 p. 108
	OBJ:	D 4.3.1	STA:	Ch.1.a				p. 111
	OBJ:	B 4.3.1	STA:	Ch.1.a Ch.11	.c			p. 111
		4.3.1	STA:	1 Ch.1.a				-
	ANS: OBJ:	4.3.1		Ch.11.c	DIF:			p. 112 p. 113
	ANS: OBJ:	4.3.1		Ch.1.a	DIF:			p. 111
	ANS: OBJ:	4.3.1		Ch.11.c	DIF:			p. 112
21.	ANS: OBJ:		PTS: STA:	l Ch.11.c	DIF:	L3	KEF:	p. 112 p. 113

22.		B			DIF:	L3	REF:	p. 111 p. 112 p. 113
23.	OBJ: ANS:	4.3.1 4.3.2 D			DIF:	L1	REF:	p. 114
	OBJ:	4.3.3						-
24.	ANS: OBJ:		PTS:	1 Ch.1.a	DIF:	L2	REF:	p. 115
25.	ANS:		PTS:		DIF:	L1	REF:	p. 254
	OBJ:	9.1.1						-
26.	ANS: OBJ:		PTS:		DIF:	L1	REF:	p. 254
27.	ANS:		STA: PTS:		DIF:	L2	REF:	p. 254
	OBJ:			Ch.1.c Ch.1.c				r
28.	ANS:		PTS:		DIF:	L2	REF:	p. 257
29	OBJ: ANS:		STA: PTS:		DIF:	12	BEE	p. 262
2).	OBJ:		STA:		DII.		KLI [*] .	p. 202
30.	ANS:		PTS:		DIF:	L2	REF:	p. 262 p. 263
21	OBJ:		STA:		DIE	1.0	DEE	
31.	ANS: OBJ:		PTS: STA:		DIF:	L2	KEF:	p. 257 p. 261 p. 262
32.	ANS:		PTS:		DIF:	L2	REF:	p. 264 p. 265 p. 266
		9.1.3 9.2.2	STA:					
33.	ANS: OBJ:		PTS:		DIF:	L2	REF:	p. 269
34.	ANS:		STA: PTS:		DIF:	L2	REF:	p. 272
0.11	OBJ:		STA:		2			P. = . =
35.	ANS:		PTS:		DIF:	L2	REF:	p. 272
36	OBJ: ANS:		STA: PTS:		DIF:	1.2	DEE	p. 272
50.	OBJ:		STA:		DII'.	L2	KLI [*] .	p. 272
37.	ANS:	D	PTS:		DIF:	L2	REF:	p. 261 p. 262 p. 277
•		9.2.1 9.5.2			D I E			
38.	ANS:	C 9.2.2 9.2.3 9	PTS:		DIF: STA:		REF:	p. 257 p. 264
39.		B					REF:	p. 269 p. 277
		9.3.2 9.5.3	STA:	Ch.2.b Ch.5				
40.	ANS:		PTS:		DIF:	L1	REF:	p. 323
41	ANS:	11.1.2 D	STA: PTS:	Ch.8.c	DIF:	L1	REE	p. 324 p. 325
71.		11.1.3		Ch.3.a Ch.3.e		L1	KLI.	p. 524 p. 525
42.	ANS:		PTS:	1	DIF:	L1	REF:	p. 325
12		11.1.3	DTC	1	DIE	1.2	DEE.	
43.	ANS: OBJ:	11.1.3		1 Ch.3.a Ch.3.e		L2	KEF:	p. 324 p. 325
44.	ANS:		PTS:		DIF:	L1	REF:	p. 333
		11.2.1						-
45.	ANS:	B 11.2.1	PTS:		DIF:	L2	REF:	p. 332
	ODI:	11.2.1	SIA:	Ch.3.a Ch.3.e				

PTS:	1	DIF:	L2	REF:	p. 334 p. 335
PTS:		DIF:	L2	REF:	p. 336 p. 337
PTS:	Ch.3.g 1	DIF:	L1	REF:	p. 330 p. 337

ID: A

49.	OBJ: 11.2.2 ANS: A Exper. ST 1.F
50.	PTS: 1 ANS: B ST 1.A
51.	PTS: 1 ANS: A St. 1.A
52.	PTS: 1 ANS: C ST.1.B
53.	PTS: 1 ANS: B St. 1.E ST. 1.H
	PTS· 1

46. ANS: C

47. ANS: A

48. ANS: C

OBJ: 11.2.1

OBJ: 11.2.1

OBJ: 11.2.2

PTS: 1

- PTS: 1 54. ANS: D St. 11.A PTS: 1 55. ANS: A ST11.D PTS: 1 56. ANS: A 57. ANS: C ST. 1.A
 - PTS: 1
- 58. ANS: C Experiment 1.f
 - PTS: 1
- 59. ANS: C ST. 1.b
 - PTS: 1

60.	ANS: ST. 1E,							
61.	PTS: ANS: ST 1B							
62.	PTS: ANS: ST 2A,	А						
63.	PTS: ANS: St 2A							
64.	PTS: ANS: ST 2B							
65.	PTS: ANS: EXP 1 ST1A							
	PTS:	1						
66.			PTS:	1	DIF:	2	STA:	2a
	KEY:	Ionic Compou	nd Rec	ognition				
67.	ANS:		PTS:	1	DIF:	2	STA:	2a
- 0		Acid Identifica						
68.				1	DIE	10	DEE	101
69.	ANS: OBJ:		PTS:	1 Ch 1 :	DIF:	L2	REF:	p. 131
70				Ch.1.i 1	DIF:	1.2	DEE.	n 121 n 122
70.	OBJ:			Ch.1.i	DIF.	LZ	KEF.	p. 131 p. 132
71	ANS:			1	DIF:	12	REF:	n 131
/1.	OBJ:			Ch.1.i	υп.		KLI .	p. 151
72.	ANS:		PTS:		DIF:	L1	REF:	p. 134
	OBJ:			Ch.1.i				1
73.	ANS:	С	PTS:	1	DIF:	L2	REF:	p. 131
	OBJ:		STA:	Ch.1.i				
74.	ANS:		PTS:		DIF:	L2	REF:	p. 133
	OBJ:			Ch.1.i	DIE			
75.	ANS:		PTS:		DIF:	L2	REF:	p. 134 p. 135
76	OBJ: ANS:		PTS:	Ch.1.g	DIF:	13	DEE	n 133 n 134
70.	OBJ:			Ch.1.g	$D\Pi^{*}$.	L3	KLI'.	p. 133 p. 134
77.	ANS:		PTS:	-	DIF:	L1	REF:	p. 136
	OBJ:			Ch.1.g				

78.	ANS: A	PTS:		L3	REF:	p. 133 p. 134 p. 135 p. 136
79.	OBJ: 5.2.2 ANS: C	STA: PTS:		L2	REF:	p. 139
	OBJ: 5.3.1	STA:	Ch.11.e			•
80.	ANS: D OBJ: 5.3.1	PTS: STA:		L2	REF:	p. 139
81.	ANS: D	PTS:	1 DIF:	L2	REF:	p. 139
82.	OBJ: 5.3.1 ANS: B	STA: PTS:	•	L2	REF:	p. 141
	OBJ: 5.3.2	STA:	Ch.1.j			F
83.	ANS: D OBJ: 5.3.4	PTS: STA:		L1	REF:	p. 144
84.	ANS: B	PTS:	•	L1	REF:	p. 130
~ ~	OBJ: 5.3.4	STA:				
85.	ANS: B OBJ: 6.1.1	PTS: STA:		LI	REF:	p. 162 p. 163
86.	ANS: A	PTS:		L2	REF:	p. 157
. -	OBJ: 6.1.1	STA:		T 0	DEE	1.55
87.	ANS: C OBJ: 6.1.1	PTS: STA:		L2	REF:	p. 157
88.	ANS: D	PTS:		L2	REF:	p. 158
	OBJ: 6.1.3	STA:				-
89.	ANS: C OBJ: 6.1.3	PTS: STA:		L3	REF:	p. 160
90.	ANS: A	PTS:		L2	REF:	p. 164
	OBJ: 6.2.2	STA:	-			
91.	ANS: A OBJ: 6.2.2	PTS: STA:		L2	REF:	p. 166
92.	ANS: B	PTS:		L2	REF:	p. 164
	OBJ: 6.2.2	STA:	-			-
93.	ANS: C OBJ: 6.2.3	PTS: STA:		LI	REF:	p. 164 p. 166
94.	ANS: B	PTS:		L2	REF:	p. 164
	OBJ: 6.2.2					
95.	ANS: B OBJ: 6.3.1	PTS: STA:		L2	REF:	p. 171
96.	ANS: B	PTS:		L2	REF:	p. 172
07	OBJ: 6.3.2	STA:			DEE	
97.	ANS: B OBJ: 6.3.2	PTS: STA:		L3	REF:	p. 162 p. 163 p. 172
98.	ANS: C	PTS:		L2	REF:	p. 173
00	OBJ: 6.3.3	STA:		1.0	DEE	177
99.	ANS: A OBJ: 6.3.3	PTS: STA:		L2	KEF:	p. 177
100.	ANS: D	PTS:		L2	REF:	p. 177
101	OBJ: 6.3.3	STA:		1.0	DEE	n 177 n 170
101.	ANS: B OBJ: 6.3.3	PTS: STA:		L2	KEF:	p. 177 p. 178
		,				

102.	ANS: A	PTS:	1	DIF:	L2	REF:	p. 172 p. 176
	OBJ: 6.3.3	STA:	Ch.1.c				
103.	ANS: C		1	DIF:	L3	REF:	p. 174
	OBJ: 6.3.3		Ch.1.c				
104.	ANS: A	PTS:				REF:	p. 188
	OBJ: 7.1.1		Ch.1.c Ch.2.a				
105.	ANS: B			DIF:	L1	REF:	p. 188
	OBJ: 7.1.1		Ch.1.c Ch.2.a				
106.	ANS: A		1	DIF:	L2	REF:	p. 188 p. 189
	OBJ: 7.1.1		Ch.1.g				
107.	ANS: A		1	DIF:	L2	REF:	p. 188
	OBJ: 7.1.2		Ch.2.a				
108.	ANS: B		1			REF:	p. 190
	OBJ: 7.1.3		Ch.1.c Ch.2.a				
109.	ANS: B	PTS:		DIF:	L1	REF:	p. 190
	OBJ: 7.1.3	STA:	Ch.3.a				
110.	ANS: A			DIF:	L1	REF:	p. 190
	OBJ: 7.1.3	STA:	Ch.1.g				
111.	ANS: B	PTS:	1	DIF:	L1	REF:	p. 192
	OBJ: 7.1.4		Ch.1.g				
112.	ANS: D	PTS:	1	DIF:	L1	REF:	p. 194
	OBJ: 7.2.1	STA:	Ch.2.a				
113.	ANS: A	PTS:	1	DIF:	L2	REF:	p. 194
	OBJ: 7.2.1	STA:	Ch.2.a				
114.	ANS: C	PTS:	1	DIF:	L2	REF:	p. 194
	OBJ: 7.2.1	STA:	Ch.2.a				
115.	ANS: C	PTS:	1	DIF:	L2	REF:	p. 195
	OBJ: 7.2.1	STA:	Ch.3.a				
116.	ANS: A	PTS:	1	DIF:	L1	REF:	p. 196
	OBJ: 7.2.2	STA:	Ch.2.a				
117.	ANS: A	PTS:	1	DIF:	L1	REF:	p. 196
	OBJ: 7.2.2	STA:	Ch.5.a				
118.	ANS: D	PTS:	1	DIF:	L1	REF:	p. 198
	OBJ: 7.2.2	STA:	Ch.5.a				
119.	ANS: A	PTS:	1	DIF:	L1	REF:	p. 201
	OBJ: 7.2.1 7.3.1	STA:	Ch.2.a				
120.	ANS: C	PTS:	1	DIF:	L2	REF:	p. 217
	OBJ: 8.2.1	STA:	Ch.2.a				-
121.	ANS: B	PTS:	1	DIF:	L2	REF:	p. 217
	OBJ: 8.2.1	STA:	Ch.2.a				-
122.	ANS: B	PTS:	1	DIF:	L2	REF:	p. 218
	OBJ: 8.2.1	STA:	Ch.1.g				-
123.	ANS: A	PTS:	-	DIF:	L2	REF:	p. 221
	OBJ: 8.2.3		Ch.2.a				•
124.	ANS: A	PTS:		DIF:	L2	REF:	p. 223
	OBJ: 8.2.4		Ch.2.a				•
125.	ANS: A	PTS:		DIF:	L2	REF:	p. 229
	OBJ: 8.2.7		Ch.2.a				-

126.	ANS: A	PTS:		DIF:	L1	REF:	p. 232
	OBJ: 8.3.2	STA:	Ch.2.a				
127.	ANS: A	PTS:	1	DIF:	L1	REF:	p. 232
	OBJ: 8.3.2	STA:	Ch.2.a				
128.	ANS: D	PTS:	1	DIF:	L2	REF:	p. 235
	OBJ: 8.3.3	STA:	Ch.2.a				
129.	ANS: A	PTS:	1	DIF:	L3	REF:	p. 238 p. 239
	OBJ: 8.4.1	STA:	Ch.2.a				
130.	ANS: B	PTS:	1	DIF:	L1	REF:	p. 240
	OBJ: 8.4.3	STA:	Ch.2.a Ch.2.l	1			
131.	ANS: A	PTS:	1				
132.	ANS: A	PTS:	1				
133.	ANS: D	PTS:	1	DIF:	L2	REF:	p. 133 p. 134 p. 135
	OBJ: 5.2.1	STA:	Ch.1.g				
134.	ANS: D	PTS:	1				
135.	ANS: D	PTS:	1				
136.	ANS: B	PTS:	1				
137.	ANS: B	PTS:	1	STA:	3e		
138.	ANS: E	PTS:	1				
139.	ANS: D	PTS:	1				
140.	ANS: A	PTS:	1				
141.	ANS: A	PTS:	1				
142.	ANS: C	PTS:	1	DIF:	L3	REF:	p. 803 p. 804
	OBJ: 25.2.1	STA:	Ch.11.d				
143.	ANS: A	PTS:	1	DIF:	1	REF:	Page Ref: 6.3
	OBJ: 6.3; G2						C
144.	ANS: A	PTS:	1				
145.	ANS: D	PTS:	1	DIF:	Medium	REF:	Section: 7.1
	OBJ: EK.1.D.3						

MULTIPLE RESPONSE

146.	ANS:	D, E	PTS:	1
147.	ANS:	C, D	PTS:	1
148.	ANS:	A, B	PTS:	1