\qquad Class: \qquad Date: \qquad

Ch 18-19 Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Table of Common Molecules				
Name	Hydrogen	Chlorine	Ammonia	Methane
Molecular Formula	H_{2}	Cl_{2}	NH_{3}	CH_{4}

What type of bond do all of the molecules in the table above have in common?
a. polar
c. ionic
b. metallic
d. covalent
\qquad 2. What is the correct noble gas electron configuration for a Chloride ion?
a. $\quad[\mathrm{Ar}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
b. $\quad[\mathrm{Ar}] 3 s^{2} 3 p^{6}$
c. $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
d. $\quad[\mathrm{Ne} e] 3 s^{2} 3 p^{6}$
\qquad 3. What is the correct order of the following bonds in terms of decreasing polarity?
a. As-Cl, $\mathrm{P}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}$
c. $\mathrm{P}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}, \mathrm{As}-\mathrm{Cl}$
b. As-Cl, N-Cl, P-Cl
d. $\quad \mathrm{P}-\mathrm{Cl}, \mathrm{As}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}$
4. How many lone pairs of electrons are on the central atom of nitrogen trihydride?
a. 1
b. 2
c. 3
d. 4
\qquad 5. Which of the following covalent bonds is the most polar?
a. C---C
c. C---Cl
b. C---Br
d. C---H
6. Arrange the following elements: $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$, in order of increasing ionic size.
a. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{S}^{--}, \mathrm{P}^{3-}$
b. $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{S}^{2-}, \mathrm{P}^{3-}$
c. $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$
d. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{P}^{3-}, \mathrm{S}^{2-}$
\qquad 7. Which of the following elements has the smallest atomic size?
a. Cesium
c. Calcium
b. Oxygen
d. Chlorine
8. If a reaction is reversible, what are the relative amounts of reactant and product at the end of the reaction?
a. no reactant; all product
b. no product; all reactant
c. some product; some reactant
d. The relationship between reactants and products cannot be determined.
9. If sulfur dioxide and oxygen can be made into sulfur trioxide, what is the reverse reaction?
a. $2 \mathrm{SO}_{3} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
b. $\mathrm{SO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{5}$
c. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
d. $\mathrm{SO}_{2}+2 \mathrm{SO}_{3} \rightarrow 3 \mathrm{~S}+4 \mathrm{O}_{2}$
\qquad 10. In an endothermic reaction at equilibrium, what is the effect of raising the temperature?
a. The reaction makes more products.
c. The reaction is unchanged.
b. The reaction makes more reactants.
d. The answer cannot be determined.
11. Which of the changes listed below would shift the following reaction to the right?
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. addition of Cl_{2}
c. increase of pressure
b. removal of O_{2}
d. decrease of pressure
12. What is the effect of adding more water to the following equilibrium reaction?
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
a. More $\mathrm{H}_{2} \mathrm{CO}_{3}$ is produced.
b. CO_{2} concentration increases.
c. The equilibrium is pushed in the direction of reactants.
d. There is no effect.
13. In an equilibrium reaction with a $K_{\text {eq }}$ of 1×10^{8}, the \qquad .
a. reactants are favored
c. the products are favored
b. reaction is spontaneous
d. reaction is exothermic
14. The $K_{\text {eq }}$ of a reaction is 4×10^{-7}. At equilibrium, the \qquad .
a. reactants are favored
b. products are favored
c. reactants and products are present in equal amounts
d. rate of the forward reaction is much greater than the rate of the reverse reaction
15. Which of the following is a property of an acid?
a. sour taste
c. strong color
b. nonelectrolyte
d. unreactive
16. What is the formula for phosphoric acid?
a. $\mathrm{H}_{2} \mathrm{PO}_{3}$
b. $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. HPO_{2}
d. HPO_{4}
\qquad 17. Which of these is an Arrhenius base?
a. LiOH
b. NH_{3}
c. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d. $\mathrm{CH}_{3} \mathrm{COOH}$
18. What is transferred between a conjugate acid-base pair?
a. an electron
c. a hydroxide ion
b. a proton
d. a hydronium ion
19. Which compound can act as both a Brønsted-Lowry acid and a Brønsted-Lowry base?
a. water
c. sodium hydroxide
b. ammonia
d. hydrochloric acid
20. In the reaction $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$, the carbonate ion is acting as a(n) \qquad \ldots
a. Arrhenius base
c. Brønsted-Lowry base
b. Arrhenius acid
d. Brønsted-Lowry acid
21. Which of the following reactions illustrates amphoterism?
a. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
b. $\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$
c. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
d. $\mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$
22. What are the acids in the following equilibrium reaction?
$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$
a. $\mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCN}$
c. $\mathrm{CN}^{-}, \mathrm{OH}^{-}$
d. $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
23. Which of the following represents a Brønsted-Lowry conjugate acid-base pair?
a. $\mathrm{SO}_{3}{ }^{2-}$ and SO_{2}
b. $\mathrm{CO}_{3}{ }^{2-}$ and CO
c. $\mathrm{H}_{3} \mathrm{O}$ and H_{2}
d. $\mathrm{NH}_{4}{ }^{+}$and NH_{3}
\qquad 24. What is the charge on the hydronium ion?
a. 2-
c. 0
b. $2-$
d. $1+$
\qquad 25. The products of self-ionization of water are \qquad
a. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
b. OH^{-}and OH^{+}
c. OH^{+}and H^{-}
d. OH^{-}and H^{+}
\qquad 26. In a neutral solution, the $\left[\mathrm{H}^{+}\right]$is \qquad .
a. $\quad 10^{-14} \mathrm{M}$
c. $\quad 1 \times 10^{7} \mathrm{M}$
b. zero
d. equal to $\left[\mathrm{OH}^{-}\right]$
27. What is pH ?
a. the negative logarithm of the hydrogen ion concentration
b. the positive logarithm of the hydrogen ion concentration
c. the negative logarithm of the hydroxide ion concentration
d. the positive logarithm of the hydroxide ion concentration
28. Which of these solutions is the most basic?
a. $\left[\mathrm{H}^{+}\right]=1 \times 10^{-2} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-4} \mathrm{M}$
c. $\left[\mathrm{H}^{+}\right]=1 \times 10^{-11} \mathrm{M}$
d. $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-13} \mathrm{M}$
29. Which of the following pairs consists of a weak acid and a strong base?
a. sulfuric acid, sodium hydroxide
c. acetic acid, sodium hydroxide
b. acetic acid, ammonia
d. nitric acid, calcium hydroxide

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

Potassium hydroxide (KOH) is a strong base because it

30.

a. easily releases hydroxide ions
c. reacts to form salt crystals in water
b. does not dissolve in water
d. does not conduct and electric current

Of four different laboratory solutions, the solution with the highest acidity has a pH of
31.
a. 11
b. 7
c. 5
d. 3

Which of the following is an observable property of many acids?

32.

a. They become slippery when reacting with water
c. They produce salts when mixed with other acids
b. They react with metals to release
d. Thye beomce more acidic when mixed with a base

Which would be most appropriate for collecting

 data during a neutralization reaction?33.

a. a pH probe
c. a thermometer
b. a statistics program
d. a graphing program
34. An analysis of the equilibrium mixture in a 1-L flask gives the following results: $[\mathrm{HCl}]=.30$ $\mathrm{mol},\left[\mathrm{O}_{2}\right]=.20 \mathrm{~mol},\left[\mathrm{H}_{2} \mathrm{O}\right]=1.2 \mathrm{~mol}$, and $\left[\mathrm{Cl}_{2}\right]=.60$

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+10 \mathrm{~kJ}
$$

a. $\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{HCl}]\left[\mathrm{O}_{2}\right]$
b. $\left[\mathrm{Cl}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]$
c. $\quad\left[\mathrm{O}_{2}\right][\mathrm{HCl}]^{4}[\mathrm{~kJ}] /\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}$
d. $[\mathrm{HCl}]\left[\mathrm{O}_{2}\right] /\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
35. An analysis of the equilibrium mixture in a 1-L flask gives the following results: $[\mathrm{HCl}]=.30$ $\mathrm{mol},\left[\mathrm{O}_{2}\right]=.20 \mathrm{~mol},\left[\mathrm{H}_{2} \mathrm{O}\right]=1.2 \mathrm{~mol}$, and $\left[\mathrm{Cl}_{2}\right]=.60$

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+10 \mathrm{~kJ}
$$

Calculate K_{eq} :
a. $\quad 0.51$
b. 2.2×10^{2}
c. 1.6
d. 3.3×10^{2}
36. An analysis of the equilibrium mixture in a 1-L flask gives the following results: $[\mathrm{HCl}]=.30$ $\mathrm{mol},\left[\mathrm{O}_{2}\right]=.20 \mathrm{~mol},\left[\mathrm{H}_{2} \mathrm{O}\right]=1.2 \mathrm{~mol}$, and $\left[\mathrm{Cl}_{2}\right]=.60$

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+10 \mathrm{~kJ}
$$

Based on your answer for K_{eq} are the reactants or products favored?
a. reactants
c. Both a and B
b. products
d. heat

$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$

Which of the following changes will cause an

37. increase in the rate of the above reaction?
a. increasing the concentration of Br 2
c. increasing the concentration of HBr
b. decreasing the concentration of CH66
d. decreasing the temperature
38. When a reaction is at equilibrium and more reactant is added, which of the following changes is the immediate result?
a. The reverse reaction rate remains the
c. The reverse reaction rate decreases.
same.
b. The forward reaction rate increases.
d. The forward reaction rate remains the same.
39. In which of the following reactions involving gases would the forward reaction be favored by an increase in pressure?
$A+B \rightleftharpoons A B$
$2 \mathrm{~A}+\mathrm{B} \rightleftharpoons \mathrm{C}+2 \mathrm{D}$
a.
c.
$\mathrm{AC} \rightleftharpoons \mathrm{A}+\mathrm{C}$
b. $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
d.
$4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{Cl}_{2(\mathrm{~g})}+113 \mathrm{~kJ}$
Which action will drive the reaction to the
40. right?
a. heating the equilibrium mixture
c. decreasing the oxygen concentration
b. adding water to the system
d. increasing the system's pressure

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The reaction shown above occurs inside a closed flask. What action will shift the reaction to the left?

41.

a. pumping CO gas into the closed flask
c. increasing the NO concentration in the flask
b. raising the total pressure inside the
d. venting some CO 2 gas from the flask flask

$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+$ heat $\leftrightharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

What kind of change will shift the reaction

42. above to the right to form more products?
a. a decrease in total pressure
c. an increase in the pressure of NH3
b. an increase in the concentration of
d. a decrease in temperature

HCl

43. Which direction best represents the effect of adding oxygen on the equilibrium position for the equation above.

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad<-->\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+10 \mathrm{~kJ}
$$

a. left
c. at equilibirum
b. right
d. a and b

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}
$$

If the above reaction takes place inside a
sealed reaction chamber, then which of these
procedures will cause a decrease in the rate of

44. reaction?

a. raising the temperature of the reaction c. removing the CO 2 as it is formed chamber
b. increasing the volume inside the
d. adding more CO to the reaction chamber
\qquad 45. The hydronium ion in the following reaction, $\mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \quad-->\quad \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{I}-$, would be considered a:
a. acid
c. conjugate acid
b. base
d. conjugate base
46. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2}\langle--\rangle 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Which of these could be added to the above reaction to increase the rate of reaction over time?
a. $\mathrm{C}_{3} \mathrm{H}_{8}$ and O_{2}
b. $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}
c. O_{2} and CO_{2}
d. O_{2} and $\mathrm{H}_{2} \mathrm{O}$
\qquad 47. Given the reaction, $\mathrm{ClO}^{2-}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{HClO}^{2-}+\mathrm{OH}^{-}$ water is acting as:
a. an acid
c. a conjugate base
b. a base
d. a conjugate acid
48.
pH Levels

$\left[\mathrm{H}_{3} 0^{+}\right]$	$\mathbf{p H}$	Example
1×100	0	$\mathrm{HCl}(4 \%)$
1×10^{-1}	1	Stomach acid
1×10^{-2}	2	Lemon juice
1×10^{-3}	3	Vinegar
1×10^{-4}	4	Soda
1×10^{-6}	5	Rainwater
1×10^{-6}	6	Milk
1×10^{-7}	7	Pure water
1×10^{-8}	8	Egg whites
1×10^{-9}	9	Baking soda
1×10^{-10}	10	Ammonia
1×10^{-11}	11	
1×10^{-12}	12	Drain cleaner
1×10^{-13}	13	NaOH (4\%)
1×10^{-14}	14	

Which substance is the most acidic?
a. Baking soda
c. Milk
b. Drain cleaner
d. Rainwater
49. Given the reaction $\mathrm{HSO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$, sulfite is the:
a. acid
c. conjugat acid
b. base
d. conjugate base
50. Which of the following pairs of elements is most likely to form an ionic compound?
a. magnesium and fluorine
c. nitrogen and sulfur
b. sodium and aluminum
d. oxygen and chlorine
51. Choose the correct molecular shapter for ammonia, NH_{3}.
a. bent
c. trigonal planar
b. linear
d. trigonal pyramidal

\square Periodic Table of the Elements

\square

Which of the following elements has the same Lewis dot structure as Silicon?
a. Germanium
c. Gallium
b. Aluminum
d. Arsenic
53. Determine the shape of SCl_{2} :
a. bent
c. tetrahedral
b. linear
d. trigonal pyramidal

Ch 18-19 Practice Test

 Answer Section
MULTIPLE CHOICE

1. ANS: D
2. ANS: D
3. ANS: A
4. ANS: A
5. ANS: C
6. ANS: A
7. ANS: B

St. 1c
PTS: 1
8. ANS: C

OBJ: 18.2.1
9. ANS: A

OBJ: 18.2.1
10. ANS: A

OBJ: 18.2.2
11. ANS: C

OBJ: 18.2.2
12. ANS: A

OBJ: 18.2.2
13. ANS: C

OBJ: 18.2.3
14. ANS: A

OBJ: 18.2.3
15. ANS: A

OBJ: 19.1.1
16. ANS: B

OBJ: 19.1.1
17. ANS: A

OBJ: 19.1.2
18. ANS: B

OBJ: 19.1.2
19. ANS: A

OBJ: 19.1.2
20. ANS: C

OBJ: 19.1.2
21. ANS: A

OBJ: 19.1.2

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

STA: 2b

PTS: 1
STA: Ch.8.a
PTS: 1 DIF: L2
STA: Ch.8.a
PTS: 1
STA: Ch.9.a
PTS: 1
STA: Ch.9.a
PTS: 1
STA: Ch.9.a
PTS: 1
DIF: L1
STA: Ch.9.c
PTS: 1
STA: Ch.9.c
PTS: 1
STA: Ch.5.a
PTS: 1
DIF: L1

PTS: 1
STA: Ch.5.e

REF: p. 549 | p. 550

REF: p. 549
REF: p. 554
REF: p. 554
REF: p. 552 | p. 553
REF: p. 556
REF: p. 556
REF: p. 587
REF: p. 588
REF: p. 589
REF: p. 591
REF: p. 591
REF: p. 590
REF: p. 592
22. ANS: B

OBJ: 19.1.2
23. ANS: D

OBJ: 19.1.2
24. ANS: D

OBJ: 19.2.1
25. ANS: D

OBJ: 19.2.1
26. ANS: D

OBJ: 19.2.1
27. ANS: A

OBJ: 19.2.2
28. ANS: C

OBJ: 19.2.2
29. ANS: C

OBJ: 19.3.2

PTS: 1
DIF: L2
REF: p. 591
STA: Ch.5.b
PTS: 1 DIF: L2
STA: Ch.5.e
PTS: 1 DIF: L1
STA: Ch.5.b
PTS: 1
STA: Ch.5.c
PTS: 1
STA: Ch.5.d
PTS: 1
STA: Ch.5.f
PTS: 1
STA: Ch.5.d
PTS: 1
STA: Ch.5.c

MULTIPLE RESPONSE

30. ANS: A

5c

PTS: 1
31. ANS: D

5d
PTS: 1
32. ANS: B

5a
PTS: 1
33. ANS: A

5a
PTS: 1
34. ANS: B

9b
PTS: 1
35. ANS: D 8b

PTS: 1
36. ANS: B

9b
PTS: 1
37. ANS: A

9a

PTS: 1
38. ANS: B

9a

PTS: 1
39. ANS: A

9a

PTS: 1
40. ANS: D 9b

PTS: 1
41. ANS: C 9a

PTS: 1
42. ANS: A

9a

PTS: 1
43. ANS: B

9a

PTS: 1
44. ANS: B

8a

PTS: 1
45. ANS: C 5b

PTS: 1
46. ANS: D

8a and 8b
PTS: 1
47. ANS: A

5b
PTS: 1
48. ANS: D

5a

PTS: 1
49. ANS: D

8b

PTS: 1
50. ANS: A

2c

PTS: 1
51. ANS: D 2f

PTS: 1
52. ANS: A

2e
PTS: 1
53. ANS: A

2f
PTS: 1

