_____ Date: _____

Thermodynamics Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question. * You will also have questions from "Blast from the Past". * You will not be given the formula's only the constants for water.

Important formulas and constants

 $Q = m\Delta H_{vap} \quad m-\Delta H_{vap}$ $Q = m\Delta H_{fus} \quad m-\Delta H_{fus}$ $Q = mC\Delta T$

- 1. The random molecular motion of a substance is greatest when the substance is
 - a. a gas.b. condensed.c. frozen.d. a liquid.
 - 2. When 45 g of an alloy, at 25°C, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is 37°C, what is its specific heat?
 - a. $9.88 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ c. $0.423 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ b. $1.77 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ d. $48.8 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$
 - 3. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

During which interval is the substance completely in the liquid phase?

- a. AB d. DE
- b. BC e. EF
- c. CD
- 4. During a phase change, the temperature of a substance _____.
 - a. may increase or decrease c. decreases
 - b. remains constant d. increases

5. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from D to E.

- a. $Q = m(-\Delta H_{fus})$ d. $Q = m(-\Delta H_{vap})$
- b. $\mathbf{Q} = \mathbf{m} \Delta \mathbf{H}_{vap}$
- e. $Q = mC\Delta T$

- c. $Q = m\Delta H_{fus}$
- 6. A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
 - a. The temperature of the water will increase.
 - b. The temperature of the water will decrease.
 - c. The temperature of the water will increase and the temperature of the metal will decrease.
 - d. The temperature of the metal will increase.

7.

According to the above figure, what is happening as a substance goes from point A to point B?

c.

d.

- a. A gas is getting colder
- b. Ice is melting
- 8. How much heat needs to be absorbed by 100.0 g of water at 5.0°C to raise its temperature to 75.0°C?
 a. 2.93 x 10⁴ J
 c. 175 J
 - a. $2.93 \times 10^4 \text{ J}$ c. 175 Jb. $1.57 \times 10^5 \text{ J}$ d. 4.18 J
 - 9. What must happen for liquid water to freeze?
 - a. The water must absorb kinetic energy from the surroundings.
 - b. The water molecules must begin to move d. in random patterns.
- c. The water molecules must begin to move faster
 - . The water must release energy to the surroundings.

A solid is getting warmer

A gas is condensing

- This reaction is _____ a. endothermic c. exothermic
 - a combination reaction b.
- d. a combustion reaction
- 15. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from E to F.

- a. $Q = m\Delta H_{fus}$
- b. $\mathbf{Q} = \mathbf{m} \mathbf{C} \Delta \mathbf{T}$ e. $Q = m\Delta H_{van}$
- c. $Q = m(-\Delta H_{vap})$

d. $Q = m(-\Delta H_{fus})$

	16.	What mass of sucrose, $C_{12}H_{22}O_{11}$, is needed to make 500.0 mL of a 0.200 <i>M</i> solution?				
		a. 34.2 g b. 100 g	c. d.	17.1 g 68.4 g		
	17.	How many mL of a 2.0M NaBr solution are not	eedec	l to make 200.0 mL of 0.50 <i>M</i> NaBr?		
		a. 25 mL	c.	100 mL		
		b. 50 mL	d.	150 mL		
	18.	The volume of 6.00 <i>M</i> HCl needed to make 31	9 mL	of 6.80 <i>M</i> HCl is		
		a. 0.128 mL	с.	281 mL		
	10	b. /.8 mL	d.	362 mL		
	19.	Which of these is an example of an exothermi	c che	mical process?		
		a. evaporation of water	с.	photosynthesis of glucose		
		b. melting ice	d.	combustion of gasoline		
	20.	A 25.0 g sample of water at 100°C has an ener water?	rgy cl	hange of -1670 J. What is the new temperature of the		
		a. 116°C	c.	104.18°C		
		b. 84.0°C	d.	58.5°C		
	21.	How many liters of NH ₃ , at STP, will react w	ith 5.	3 g O_2 to form NO ₂ and water?		
		$4\mathrm{NH}_3(g) + 7\mathrm{O}_2(g) \rightarrow 4\mathrm{NO}_2 + 6\mathrm{H}_2\mathrm{O}(g)$				
		a. 0.004 23 L	c.	3.03 L		
		b. 2.12 L	d.	6.49 L		
	22.	P_4O_{10} + $H_2O \rightarrow H_3PO_4$				
How many molecules of water are needed to produce 66.8 g of phosphoric acid?						
		a. 2.74×10^1	c.	$6.16 \ge 10^{23}$		
		b. 6.16×10^1	d.	61.6 x 10 ⁻²³		
	23.	Select the set of coefficients that properly	bala	nce the equation below.		
		$\underline{} Pb(NO_3)_2 + \underline{} NH_4Cl \rightarrow \underline{} PbCl_2 + \underline{}$	NH	I ₄ NO ₃		
		a. 1, 2, 1, 2	c.	2, 1, 2, 1		
		b. 1, 2, 2, 1	d.	1, 2, 2, 2		
	24.	Sketch a phase change diagram for water starting at $120 {}^{0}\text{C}$ & increasing to -60 ${}^{0}\text{C}$.				
		Consider the change in temerpature for your g	raph.	Choose the best desription.		
		a. ΔT and Endothermic	d.	$-\Delta T$ and Exothermic		
		b. ΔT and Exothermic	e.	ΔT Niether Exothermic or		
				Endothermic		

4

c. $-\Delta T$ and Endothermic

25. Choose the correct formula to find the amount of heat change at D.

27. The graph below represents what type of reaction?

N	gr	nı	۰ د
Τđ	aı		

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

Α

В

a.

b.

32. It takes 770 joules of energy to raise the temperature of 50.0 g of mercury by 110°C. What is the specific heat of mercury?

С

c.

d. D

33. How much heat is required to raise the temperature of 5.5×10^2 g of aluminum by 10°C? (specific heat of aluminum = $0.21 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$)

34. A 55.0-g piece of copper wire is heated, and the temperature of the wire changes from 19.0°C to 86.0°C. The amount of heat absorbed is 343 cal. What is the specific heat of copper?

True/False

Indicate whether the statement is true or false.

_____ 35. The melting point and the freezing point of a water do not occur at the same temperature.

Problem

36. Choose the correct graph for an endothermic reaction.

- 37. Which of the following pictures best represents an endothermic reaction?
 - A.

38. Which part of the diagram is the activation energy?

Thermodynamics Practice Test Answer Section

MULTIPLE CHOICE

1.	ANS: A St. 4b, 7a			
	PTS: 1	STA: 4b, 7a		
2.	ANS: B	PTS: 1	DIF: L2	REF: p. 509
	OBJ: 17.1.3	STA: Ch.7.d		
3.	ANS: C	PTS: 1		
4.	ANS: B	PTS: 1	DIF: L1	REF: p. 520
	OBJ: 17.3.1	STA: Ch.7.d		
5.	ANS: A	PTS: 1		
6.	ANS: C	PTS: 1	DIF: L1	REF: p. 506
	OBJ: 17.1.1	STA: Ch.7.a		
7.	ANS: A	PTS: 1		
8.	ANS: A	PTS: 1		
9.	ANS: D			
	St. 7c			
	PTS: 1			
10.	ANS: C	PTS: 1		
11.	ANS: B	PTS: 1		
12.	ANS: D	PTS: 1	DIF: L1	REF: p. 506
	OBJ: 17.1.2	STA: Ch.7.b		
13.	ANS: E	PTS: 1		
14.	ANS: C	PTS: 1		
15.	ANS: B	PTS: 1		
16.	ANS: A	PTS: 1	DIF: L3	REF: p. 481 p. 482
	OBJ: 16.2.1	STA: Ch.6.d		
17.	ANS: B	PTS: 1	DIF: L2	REF: p. 483 p. 484
	OBJ: 16.2.2	STA: Ch.6.d		
18.	ANS: D	PTS: 1	DIF: L2	REF: p. 483 p. 484
	OBJ: 16.2.2	STA: Ch.6.d		
19.	ANS: D			
	St. 7b			
	PTS: 1			
20.	ANS: B	PTS: 1		
21.	ANS: B	PTS: 1	DIF: L2	REF: p. 371
	OBJ: 12.3.1	STA: Ch.3.d		
22.	ANS: C	PTS: 1		
23.	ANS: A	PTS: 1	STA: 3a	KEY: Balancing Equations
24.	ANS: D	PTS: 1		
25.	ANS: A	PTS: 1		

26.	ANS:	E	PTS:	1
27.	ANS:	В	PTS:	1

MULTIPLE RESPONSE

28.	ANS:	A, B, D	PTS:	1
29.	ANS:	A, B, C	PTS:	1
30.	ANS:	A, E	PTS:	1
31.	ANS:	C, D	PTS:	1

SHORT ANSWER

32.	ANS:					
	Specific heat = $\frac{1}{50 \text{ g}}$	$\frac{770 \text{ J}}{\text{g} \cdot 110^{\circ}\text{C}} = 0.14 \frac{\text{J}}{\text{g}^{\circ}\text{C}}$				
22	PTS: 1 STA: Ch.7.d	DIF: L2	REF:	p. 512	OBJ:	17.2.1
55.	Heat energy = mass	× specific heat × tempe	erature	change		
	$= 550 \text{ g} \times 0.21 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$	× 10°C		C C		
	$= 1.2 \times 10^3$ cal					
	PTS: 1 STA: Ch.7.d	DIF: L2	REF:	p. 508	OBJ:	17.1.3
34.	ANS:					
	$\Delta T = 86.0^{\circ}\text{C} - 19.0^{\circ}$	$^{\circ}C = 67.0^{\circ}C$				
	specific heat = $\frac{1}{\text{mas}}$	s temperature change				
	$=\frac{343\text{cal}}{55.0\text{g}\cdot67.0^\circ\text{C}}$					
	$=9.31\times10^{-2}\ \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$					
	PTS: 1 OBJ: 1713	DIF: L2 STA: Ch 7 d	REF:	p. 509 p. 510)	
	ODJ. 17.1.3	51A. UI./.u				

TRUE/FALSE

35. ANS: F PTS: 1

PROBLEM

- 36. ANS: A
 - PTS: 1
- 37. ANS: A
 - PTS: 1
- 38. ANS: B

PTS: 1