\qquad
\qquad
\qquad

Thermodynamics Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.

* You will also have questions from "Blast from the Past".
* You will not be given the formula's only the constants for water.

Important formulas and constants

$Q=m \Delta H_{\text {vap }} m-\Delta H_{\text {vap }}$
$Q=m \Delta H_{\text {fus }} \quad m-\Delta H_{\text {fus }}$
$Q=m C \Delta T$
\qquad 1. The random molecular motion of a substance is greatest when the substance is
a. a gas.
c. frozen.
b. condensed.
d. a liquid.
\qquad 2. When 45 g of an alloy, at $25^{\circ} \mathrm{C}$, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is $37^{\circ} \mathrm{C}$, what is its specific heat?
a. $\quad 9.88 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
b. $\quad 1.77 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
c. $\quad 0.423 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
d. $\quad 48.8 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
\qquad 3. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

During which interval is the substance completely in the liquid phase?
a. AB
d. DE
b. BC
e. EF
c. CD
4. During a phase change, the temperature of a substance \qquad .
a. may increase or decrease
c. decreases
b. remains constant
d. increases
\qquad 5. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from D to E.
a. $\quad Q=m\left(-\Delta H_{f u s}\right)$
b. $\quad Q=m \Delta H_{\text {vap }}$
c. $Q=m \Delta H_{\text {fus }}$
d. $\quad Q=m\left(-\Delta H_{\text {vap }}\right)$
e. $\quad Q=m C \Delta T$
6. A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
a. The temperature of the water will increase.
b. The temperature of the water will decrease.
c. The temperature of the water will increase and the temperature of the metal will decrease.
d. The temperature of the metal will increase.

According to the above figure, what is happening as a substance goes from point A to point B ?
a. A gas is getting colder
c. A solid is getting warmer
b. Ice is melting
d. A gas is condensing
8. How much heat needs to be absorbed by 100.0 g of water at $5.0^{\circ} \mathrm{C}$ to raise its temperature to $75.0^{\circ} \mathrm{C}$?
a. $\quad 2.93 \times 10^{4} \mathrm{~J}$
b. $\quad 1.57 \times 10^{5} \mathrm{~J}$
c. 175 J
d. 4.18 J
9. What must happen for liquid water to freeze?
a. The water must absorb kinetic energy from the surroundings.
c. The water molecules must begin to move faster
b. The water molecules must begin to move in random patterns.
d. The water must release energy to the surroundings.
10. The potential energy diagram of a chemical reaction is shown below.

Which letter represents the total amount of energy released in this exothermic reaction?
a. A
c. C
b. B
d. D
11. When a substance condenses or freezes energy is \qquad and when a substance evaporates or melts energy is \qquad _.
a. absorbed, released
b. released, absorbed
12. Freezing water is $\mathrm{a}(\mathrm{an})$ \qquad .
a. endothermic process
c. ectothermic process
b. polythermic process
d. exothermic process
13. Heat changes can occur when \qquad .
a. a substance vaporizes
d. a substance solidifies
b. a substance melts
e. all of the above
c. a substance dissolves
14. The following equation shows the reaction that occurs when nitroglycerine explodes.

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{9} \mathrm{~N}_{3} \text {--> } 12 \mathrm{CO}_{2}+6 \mathrm{~N}_{2}+\mathrm{O}_{2}+10 \mathrm{H}_{2} \mathrm{O}+1725 \mathrm{~kJ}
$$

This reaction is \qquad .
a. endothermic
c. exothermic
b. a combination reaction
d. a combustion reaction
15. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from E to F.
a. $\quad Q=m \Delta H_{\text {fus }}$
b. $\quad Q=m C \Delta T$
c. $Q=m\left(-\Delta H_{\text {vap }}\right)$
d. $\quad Q=m\left(-\Delta H_{f u s}\right)$
e. $\quad Q=m \Delta H_{\text {vap }}$
16. What mass of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, is needed to make 500.0 mL of a 0.200 M solution?
a. $\quad 34.2 \mathrm{~g}$
b. $\quad 100 \mathrm{~g}$
c. $\quad 17.1 \mathrm{~g}$
d. $\quad 68.4 \mathrm{~g}$
17. How many mL of a 2.0 M NaBr solution are needed to make 200.0 mL of 0.50 M NaBr ?
a. 25 mL
b. 50 mL
c. $\quad 100 \mathrm{~mL}$
d. $\quad 150 \mathrm{~mL}$
18. The volume of 6.00 M HCl needed to make 319 mL of 6.80 M HCl is \qquad .
a. $\quad 0.128 \mathrm{~mL}$
b. $\quad 7.8 \mathrm{~mL}$
c. $\quad 281 \mathrm{~mL}$
d. $\quad 362 \mathrm{~mL}$
19. Which of these is an example of an exothermic chemical process?
a. evaporation of water
c. photosynthesis of glucose
b. melting ice
d. combustion of gasoline
20. A 25.0 g sample of water at $100^{\circ} \mathrm{C}$ has an energy change of -1670 J . What is the new temperature of the water?
a. $116^{\circ} \mathrm{C}$
b. $\quad 84.0^{\circ} \mathrm{C}$
c. $\quad 104.18^{\circ} \mathrm{C}$
d. $58.5^{\circ} \mathrm{C}$
21. How many liters of NH_{3}, at STP, will react with $5.3 \mathrm{~g} \mathrm{O}_{2}$ to form NO_{2} and water?
$4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. 0.00423 L
b. $\quad 2.12 \mathrm{~L}$
c. $\quad 3.03 \mathrm{~L}$
d. $\quad 6.49 \mathrm{~L}$
22. $\mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O}$--> $\mathrm{H}_{3} \mathrm{PO}_{4}$

How many molecules of water are needed to produce 66.8 g of phosphoric acid?
a. $\quad 2.74 \times 10^{1}$
b. $\quad 6.16 \times 10^{1}$
c. $\quad 6.16 \times 10^{23}$
d. $\quad 61.6 \times 10^{-23}$
23. Select the set of coefficients that properly balance the equation below.

$$
\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \ldots \mathrm{PbCl}_{2}+\ldots \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

a. $1,2,1,2$
b. $1,2,2,1$
c. $2,1,2,1$
d. $1,2,2,2$
24. Sketch a phase change diagram for water starting at $120^{\circ} \mathrm{C}$ \& increasing to $-60^{\circ} \mathrm{C}$.

Consider the change in temerpature for your graph. Choose the best desription.
a. $\Delta \mathrm{T}$ and Endothermic
d. $-\Delta \mathrm{T}$ and Exothermic
b. $\Delta \mathrm{T}$ and Exothermic
e. $\Delta \mathrm{T}$ Niether Exothermic or
Endothermic
c. $-\Delta T$ and Endothermic
25. Choose the correct formula to find the amount of heat change at D .

a. $\quad Q=m \Delta$ Hvap
b. $\quad Q=m C \Delta T$
c. $Q=m-\Delta H$ vap
d. $\quad Q=m \Delta H f u s$
e. $\quad Q=m-\Delta H f u s$
26. Choose the correct formula to find the amount of heat change at A.

a. $\quad Q=m \Delta H$ vap
b. $\quad Q=m C \Delta T$
c. $\quad Q=m-\Delta$ Hvap
d. $\quad Q=m \Delta$ Hfus
e. $\quad Q=m-\Delta H f u s$
27. The graph below represents what type of reaction?

a. Exothermic
b. Endothermic

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
\qquad 28. Choose which example/s below are exothermic. Choose all the apply.
a. burning hydrogen gas
d. burning wood
b. condensing steam
e. boiling water
c. melting ice
29. Which of the following are true about Q ?
a. It is equal to $\mathrm{mc} \Delta \mathrm{T}$
c. It is enthalpy
b. It has units of J
d. The units are in $\mathrm{J} / \mathrm{g} \mathrm{x}^{0} \mathrm{C}$
\qquad 30. Which of the following are true for endothermic reactions?
a. The energy of the products is higher than
d. Heat is found on the products the energy of the reactants
b. $\Delta \mathrm{H}$ is negative
e. $\Delta \mathrm{H}$ is positive
c. The energy of the products is lower than the energy of the reactants
31. Which two are exothermic?

a. A
c. C
b. B
d. D

Short Answer

32. It takes 770 joules of energy to raise the temperature of 50.0 g of mercury by $110^{\circ} \mathrm{C}$. What is the specific heat of mercury?
33. How much heat is required to raise the temperature of $5.5 \times 10^{2} \mathrm{~g}$ of aluminum by $10^{\circ} \mathrm{C}$? (specific heat of aluminum $=0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$)
34. A 55.0 -g piece of copper wire is heated, and the temperature of the wire changes from $19.0^{\circ} \mathrm{C}$ to $86.0^{\circ} \mathrm{C}$. The amount of heat absorbed is 343 cal. What is the specific heat of copper?

True/False

Indicate whether the statement is true or false.
\qquad 35. The melting point and the freezing point of a water do not occur at the same temperature.

Problem

36. Choose the correct graph for an endothermic reaction.

1:A
2: B
3: C
4: E

(1)

(3)

37. Which of the following pictures best represents an endothermic reaction?
A.

B.

Progress of the reaction
38. Which part of the diagram is the activation energy?

Thermodynamics Practice Test

Answer Section

MULTIPLE CHOICE

1. ANS: A

St. 4b, 7a
PTS: 1 STA: 4b, 7a
2. ANS: B

OBJ: 17.1.3
3. ANS: C
4. ANS: B

OBJ: 17.3.1
5. ANS: A
6. ANS: C

OBJ: 17.1.1
7. ANS: A
8. ANS: A

PTS: 1
STA: Ch.7.d
PTS: 1
PTS: 1
STA: Ch.7.d
PTS: 1
PTS: 1
STA: Ch.7.a
PTS: 1
PTS: 1
9. ANS: D

St. 7c

PTS: 1
10. ANS: C
11. ANS: B
12. ANS: D

OBJ: 17.1.2
13. ANS: E
14. ANS: C
15. ANS: B
16. ANS: A

OBJ: 16.2.1
17. ANS: B

OBJ: 16.2.2
18. ANS: D

OBJ: 16.2.2
19. ANS: D

St. 7b

PTS: 1
20. ANS: B
21. ANS: B

OBJ: 12.3.1
22. ANS: C
23. ANS: A
24. ANS: D
25. ANS: A

PTS: 1
PTS: 1
STA: Ch.3.d
PTS: 1
PTS: 1
PTS: 1
PTS: 1

DIF: L2
REF: p. 509

DIF: L1
REF: p. 520

DIF: L1
REF: p. 506

PTS: 1
PTS: 1
PTS: 1
STA: Ch.7.b
PTS: 1
PTS: 1
PTS: 1
PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.6.d

DIF: L3

DIF: L2

DIF: L2

DIF: L2

STA: 3a
KEY: Balancing Equations
26. ANS: E
27. ANS: B

PTS: 1
PTS: 1

MULTIPLE RESPONSE

28. ANS: A, B, D PTS: 1
29. ANS: A, B, C PTS: 1
30. ANS: A, E PTS: 1
31. ANS: C, D PTS: 1

SHORT ANSWER

32. ANS:

Specific heat $=\frac{770 \mathrm{~J}}{50 \mathrm{~g} \cdot 110^{\circ} \mathrm{C}}=0.14 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}$
PTS: 1 DIF: L2 REF: p. 512 OBJ: 17.2.1
STA: Ch.7.d
33. ANS:

Heat energy $=$ mass \times specific heat \times temperature change
$=550 \mathrm{~g} \times 0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}} \times 10^{\circ} \mathrm{C}$
$=1.2 \times 10^{3} \mathrm{cal}$
PTS: 1 DIF: L2 REF: p. 508 OBJ: 17.1.3
STA: Ch.7.d
34. ANS:
$\Delta T=86.0^{\circ} \mathrm{C}-19.0^{\circ} \mathrm{C}=67.0^{\circ} \mathrm{C}$
specific heat $=\frac{\text { heat absorbed }}{\text { mass temperature change }}$
$=\frac{343 \mathrm{cal}}{55.0 \mathrm{~g} \cdot 67.0^{\circ} \mathrm{C}}$
$=9.31 \times 10^{-2} \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
PTS: 1 DIF: L2 REF: p. 509|p. 510
OBJ: 17.1.3 STA: Ch.7.d

TRUE/FALSE

35. ANS: F

PTS: 1

PROBLEM

36. ANS:

A
PTS: 1
37. ANS:

A
PTS: 1
38. ANS:

B

PTS: 1

