\qquad
\qquad
\qquad

Ch 16 Practice test

Matching

You need your own calculator for the test.
I will not answer any questions about this test after tutorials on the first day the test is given.
Match each item with the correct statement below.
a. Henry's law
d. supersaturated solution
b. immiscible
e. concentration
c. saturated solution

1. describes liquids that are insoluble in one another
2. solution containing maximum amount of solute
3. solution containing more solute than can theoretically dissolve at a given temperature
4. At a given temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid.
\qquad 5. measure of the amount of solute dissolved in a specified quantity of solvent

Match each item with the correct statement below.
a. molarity
d. solute
b. dilutions
e. solvent
c. Henry's law
6. number of moles of solute dissolved in 1 L of solution
7. reduces the number of moles per solution
8. directly proportional
9. solid substance
10. a liquid

Multiple Choice

Identify the choice that best completes the statement or answers the question.
11. Which of the following usually makes a substance dissolve faster in a solvent?
a. agitating the solution
b. increasing the particle size of the solute
c. lowering the temperature
d. decreasing the number of particles
12. Which of the following pairs of factors affects the solubility of a particular substance?
a. temperature and the nature of solute and solvent
b. temperature and degree of mixing
c. particle size and degree of mixing
d. particle size and temperature
13. The solubility of a gas in a liquid is \qquad .
a. proportional to the square root of the pressure of the gas above the liquid
b. directly proportional to the pressure of the gas above the liquid
c. inversely proportional to the pressure of the gas above the liquid
d. unrelated to the pressure of the gas above the liquid
14. What happens to the solubility of a gas, in a liquid, if the partial pressure of the gas above the liquid decreases?
a. The solubility decreases.
c. The solubility remains the same.
b. The solubility increases.
d. The solubility cannot be determined.
15. If the solubility of a gas in water is $4.0 \mathrm{~g} / \mathrm{L}$ when the pressure of the gas above the water is 3.0 atm , what is the pressure of the gas above the water when the solubility of the gas is $1.0 \mathrm{~g} / \mathrm{L}$?
a. $\quad 0.75 \mathrm{~atm}$
b. $\quad 1.3 \mathrm{~atm}$
c. 4.0 atm
d. 12 atm
16. In a concentrated solution there is \qquad .
a. no solvent
c. a small amount of solute
b. a large amount of solute
d. no solute
17. What is the molarity of a solution that contains 6 moles of solute in 2 liters of solution?
a. $6 M$
b. $\quad 12 M$
c. $\quad 7 \mathrm{M}$
d. $3 M$
18. In which of the following is the solution concentration expressed in terms of molarity?
a. $\quad \frac{10 \mathrm{~g} \text { of solute }}{1000 \mathrm{~g} \text { of solution }}$
b. $\quad \frac{10 \mathrm{~g} \text { of solute }}{1000 \mathrm{~mL} \text { of solution }}$
c. $\frac{10 \mathrm{~mL} \text { of solute }}{1 \mathrm{~L} \text { of solution }}$
d. $\frac{10 \mathrm{~mol} \text { of solute }}{1 \mathrm{~L} \text { of solution }}$
19. Which of the following operations yields the number of moles of solute?
a. molarity \times moles of solution
c. molarity \times mass of solution
b. molarity \times liters of solution
d. moles of solution \div volume of solution
20. What is the molarity of 200 mL of solution in which 2.0 moles of sodium bromide is dissolved?
a. 2.0 M
b. 10 M
c. $\quad 0.40 \mathrm{M}$
d. 4.0 M
21. What is the number of moles of solute in 250 mL of a 0.4 M solution?
a. $\quad 0.1 \mathrm{~mol}$
b. $\quad 0.16 \mathrm{~mol}$
c. $\quad 0.62 \mathrm{~mol}$
d. $\quad 1.6 \mathrm{~mol}$
22. What mass of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, is needed to make 500.0 mL of a 0.200 M solution?
a. $\quad 34.2 \mathrm{~g}$
b. $\quad 100 \mathrm{~g}$
c. $\quad 17.1 \mathrm{~g}$
d. $\quad 68.4 \mathrm{~g}$
23. What mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is needed to make 2.5 L of 2.0 M solution? $(\mathrm{Na}=23 \mathrm{~g} ; \mathrm{S}=32 \mathrm{~g} ; \mathrm{O}=16 \mathrm{~g})$
a. 178 g
b. 284 g
c. 356 g
d. 710 g
24. What does NOT change when a solution is diluted by the addition of solvent?
a. volume of solvent
c. number of moles of solute
b. mass of solvent
d. molarity of solution
25. How many mL of a 2.0 M NaBr solution are needed to make 200.0 mL of 0.50 M NaBr ?
a. 25 mL
b. $\quad 50 \mathrm{~mL}$
c. $\quad 100 \mathrm{~mL}$
d. $\quad 150 \mathrm{~mL}$
26. If 2.0 mL of 6.0 M HCl is used to make a $500.0-\mathrm{mL}$ aqueous solution, what is the molarity of the dilute solution?
a. 0.024 M
b. $0.24 M$
c. $\quad 0.30 \mathrm{M}$
d. $\quad 0.83 \mathrm{M}$
27. To 225 mL of a 0.80 M solution of KI , a student adds enough water to make 1.0 L of a more dilute KI solution. What is the molarity of the new solution?
a. 180 M
b. 2.8 M
c. 0.35 M
d. 0.18 M

Short Answer

28. If the solubility of a gas is $7.5 \mathrm{~g} / \mathrm{L}$ at 404 kPa pressure, what is the solubility of the gas when the pressure is 202 kPa ?
29. How many liters of a 0.30 M solution are needed to give 2.7 moles of solute?
30. What is the molarity of a solution containing 9.0 moles of solute in 2500 mL of solution?
31. What is the molarity of a solution containing 1.2 grams of solute in 450 mL of solution? (molar mass of solute $=24 \mathrm{~g}$)
32. What is the number of moles of solute in 650 mL of a 0.40 M solution?
33. How many liters of a $1.5 M$ solution are required to yield 5.0 grams of solute? (molar mass of solute $=30.0 \mathrm{~g}$)
34. If 1.0 mL of 6.0 M HCl is added to 499 mL of water to give exactly a $500-\mathrm{mL}$ solution, what is the molarity of the dilute solution?

Ch 16 Practice test

Answer Section

MATCHING

1. ANS: B

OBJ: 16.1.2
2. ANS: C OBJ: 16.1.3
3. ANS: D

OBJ: 16.1.3
4. ANS: A

OBJ: 16.1.3
5. ANS: E

OBJ: 16.2.1
6. ANS: A

OBJ: 16.2.1
7. ANS: B OBJ: 16.3.1
8. ANS: C OBJ: 16.3.1
9. ANS: D
10. ANS: E

MULTIPLE CHOICE

11. ANS: A

OBJ: 16.1.1
12. ANS: A OBJ: 16.1.3
13. ANS: B OBJ: 16.1.3
14. ANS: A OBJ: 16.1.4
15. ANS: A OBJ: 16.1.4
16. ANS: B OBJ: 16.2.1
17. ANS: D OBJ: 16.2.1
18. ANS: D OBJ: 16.2.1
19. ANS: B OBJ: 16.2.1
20. ANS: B OBJ: 16.2.1

PTS: 1
STA: Ch. 6
PTS: 1
STA: Ch. 6
PTS: 1
STA: Ch.6.c
PTS: 1
STA: Ch.6.c
PTS: 1
STA: Ch.6.d

PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.6.e
PTS: 1
STA: Ch.6.e
PTS: 1
PTS: 1

DIF: L1

PTS: 1
STA: Ch.6.b
PTS: 1
STA: Ch.6.c
PTS: 1
STA: Ch.6.c
PTS: 1
STA: Ch.6.c
PTS: 1
STA: Ch.6.c PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.6.d PTS: 1
STA: Ch.6.d PTS: 1
STA: Ch.6.d

DIF: L2

DIF: L2

DIF: L2

DIF: L1

DIF: L3

DIF: L1

DIF: L1

DIF: L1

DIF: L2

DIF: L2

REF: p. 471 | p. 472

REF: p. 473 | p. 474

REF: p. 476
REF: p. 476 | p. 477

REF: p. 476 | p. 477

REF: p. 480

REF: p. 481

REF: p. 480 | p. 481

REF: p. 480
REF: p. 481
21. ANS: A

OBJ: 16.2.1
22. ANS: A

OBJ: 16.2.1
23. ANS: D

OBJ: 16.2.1
24. ANS: C

OBJ: 16.2.2
25. ANS: B

OBJ: 16.2.2
26. ANS: A

OBJ: 16.2.2
27. ANS: D

OBJ: 16.2.2

PTS: 1
STA: Ch.6.d

DIF: L2
DIF: L3
DIF: L3
DIF: L1
DIF: L2
DIF: L2
DIF: L3

REF: p. $480 \mid$ p. 482
REF: p. 481 | p. 482
REF: p. 481 | p. 482
REF: p. 483
REF: p. 483 | p. 484
REF: p. 483 | p. 484
REF: p. 483 | p. 484

SHORT ANSWER

28. ANS:
$\mathrm{S}_{2}=\frac{\mathrm{S}_{1} \times \mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{7.5 \mathrm{~g} / \mathrm{L} \times 202 \mathrm{kPa}}{404 \mathrm{kPa}}=3.8 \mathrm{~g} / \mathrm{L}$
PTS: 1 DIF: L2 REF: p. $476 \mid$ p. 477
OBJ: 16.1.4 STA: Ch.6.c
29. ANS:
$2.7 \mathrm{~mol} \times \frac{1 \mathrm{~L}}{0.30 \mathrm{~mol}}=9.0 \mathrm{~L}$
PTS: 1
DIF: L1
REF: p. 480
OBJ: 16.2.1
STA: Ch.6.d
30. ANS:
$\frac{9.0 \mathrm{~mol}}{2500 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=3.6 \mathrm{~mol} / \mathrm{L}$
PTS: 1 DIF: L2 REF: p. $480 \mid$ p. 481
OBJ: 16.2.1 STA: Ch.6.d
31. ANS:
$\frac{1.2 \mathrm{~g}}{450 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{24 \mathrm{~g}} \times \frac{1000 \mathrm{~L}}{1 \mathrm{~L}}=0.11 \mathrm{M}$
PTS: 1 DIF: L2 REF: p. $480 \mid$ p. 481
OBJ: 16.2.1 STA: Ch.6.d
32. ANS:
$650 \mathrm{~mL} \times \frac{0.4 \mathrm{~mol}}{1000 \mathrm{~mL}}=0.26 \mathrm{~mol}$
PTS: 1
OBJ: 16.2.1
DIF: L2
REF: p. 480 | p. 482
33. ANS:
$\frac{1 \mathrm{~L}}{1.5 \mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{30.0 \mathrm{~g}} \times 5.0 \mathrm{~g}=0.11 \mathrm{~L}$

PTS: 1 DIF: L3 REF: p. $480 \mid$ p. 481
OBJ: 16.2.1 STA: Ch.6.d
34. ANS:
$M_{2}=\frac{M_{1} \times V_{1}}{V_{2}}=6.0 M \times \frac{1.0 \mathrm{~mL}}{500 \mathrm{~mL}}=0.012 M$

PTS: 1 DIF: L2 REF: p. $483 \mid$ p. 484
OBJ: 16.2.2 STA: Ch.6.d

