\qquad
\qquad
\qquad

Practice Test Chapter 12

Multiple Choice

*You need your own calculator for the test. You will not be able to borrow from your teacher. There will be blast from the past questions. Help is always available during tutorials.

1. $\mathrm{H}_{2} \mathrm{O}_{2}$, hydrogen peroxide, naturally breaks down into $\mathrm{H}_{2} \mathrm{O}$ over time. MnO , manganese dioxide, can be used to lower the energy of activation needed for this reaction to take place and, thus, increase the rate of reaction. What type of substance is MnO_{2} ?
a. an inhibitor
c. a product
b. a catalyst
d. a reactant
\qquad

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

This chemical equation represents the combustion of propane. When correctly balanced, the coefficient for water is
a. 2
b. 4
c. 8
d. 16
3.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

In this reaction, how many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are required to completely react with 84 grams of CO ?
a. 64
b. 80
c. 160
d. 1400

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow
$$

$2 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$

4.

If 54.0 grams of water are mixed with excess magnesium nitride, then how many grams of ammonia are produced?
a. $\quad 1.00$ grams
b. 17.0 grams
c. 51.0 grams
d. 153 grams
\qquad 5.

A mass of 5.4 grams of aluminum (Al) reacts with an excess of copper (II) chloride $\left(\mathrm{CuCl}_{2}\right)$ in solution, as shown above. What mass of solid copper (Cu) is produced?
a. 28 grams
b. 8.5 grams
c. 38 grams
d. 19 grams
6. What is the density of 1 mole of NO_{2} gas at STP?
a. $2.05 \mathrm{~g} / \mathrm{L}$
b. $\quad 1.34 \mathrm{~g} / \mathrm{L}$
c. $\quad 1.03 \mathrm{~g} / \mathrm{L}$
d. $\quad 0.513 \mathrm{~g} / \mathrm{L}$
\qquad 7. What type of reaction is the reaction below?
$\ldots \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ _ $\mathrm{Fe}+\ldots \mathrm{O}_{2}$
a. Synthesis/Combination
c. Combustion
b. Decomposition
d. Single Replacement
\qquad 8. What type of reaction is the reaction below?
$\ldots \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$
a. Synthesis/Combination
c. Double Replacement
b. Decomposition
d. Single Replacement
\qquad 9. Select the set of coefficients that properly balance the equation below.

$$
\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \ldots \mathrm{PbCl}_{2}+\ldots \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

a. 1,2,1,2 c. $2,1,2,1$
b. 1, 2, 2, 1
d. $1,2,2,2$
10. Which of the following is a correct interpretation of this balanced equation? $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
a. Two molecules of potassium chlorate
c. Two formula units of potassium produce two molecules of potassium chloride and three molecules of oxygen. chlorite produce two formula units of potassium chloride and three molecules of oxygen.
b. Two formula units of potassium chlorate produce two formula units of potassium chloride and three molecules of oxygen.
d. Two formula units of potassium chlorate produce two formula units of potassium chloride and two molecules of oxygen.
11. This is the Reaction that occurs when an airbag goes off.

$$
2 \mathrm{NaN}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}
$$

If an airbag has 100 grams of sodium azide $\left(\mathrm{NaN}_{3}\right)$, how many liters of nitrogen gas are produced? Assume STP
a. $\quad 67.2 \mathrm{~L}$
b. 22.4 L
c. $\quad 51.7 \mathrm{~L}$
d. 5.8 L
12. $2 \mathrm{CaCO}_{3}+2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaSO}_{4}+2 \mathrm{CO}_{2}$

If the above reaction has a 96.8% yield, how many actual grams of CaSO_{4} are recovered when 5.24 g of SO_{2} are used in the presence of excess CaCO_{3} and O_{2} ?
a. $\quad 10.77 \mathrm{~g} \mathrm{CaSO}_{4}$
b. $\quad 11.13 \mathrm{~g} \mathrm{CaSO}_{4}$
c. $\quad 10.00 \mathrm{~g} \mathrm{CaSO}_{4}$
d. $\quad 9.36 \mathrm{~g} \mathrm{CaSO}_{4}$
13. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?
a. 11.2 L
b. $\quad 22.4 \mathrm{~L}$
c. $\quad 33.6 \mathrm{~L}$
d. $\quad 44.8 \mathrm{~L}$
14. Which of these expressions is a correct interpretation of the balanced equation?

$$
2 \mathrm{~S}+3 \mathrm{O}_{2}-->2 \mathrm{SO}_{3}
$$

a. 2 moles of $\mathrm{S}+3$ moles of oxygen
c. 2 g of $\mathrm{S}+3 \mathrm{~g}$ of O_{2}--> 2 g of SO_{3} --> 2 moles of SO_{3}
b. 2 atoms of $\mathrm{S}+6$ molecules of
d. None of the above oxygen --> 2 molecules of SO_{3}
15. How many moles of water are needed to react with 8.4 mol of NO_{2} ?
\qquad $\mathrm{NO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$--> __NO + \qquad HNO_{3}
a. 2.8 moles
b. $\quad 3.0$ moles
c. 8.4 moles
d. 25 moles
16. How many liters of NH_{3}, at STP, will react with $5.3 \mathrm{~g} \mathrm{O}_{2}$ to form NO_{2} and water?
$4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. 0.00423 L
b. $\quad 2.12$ L
c. $\quad 3.03 \mathrm{~L}$
d. $\quad 6.49 \mathrm{~L}$
17. What is one item that is NOT conserved in the reaction shown below?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NF}_{3}(\mathrm{~g})$
a. molecules only
c. mass and molecules only
b. mass only
d. moles and atoms only
18. Lead nitrate can be decomposed by heating. What is the percent yield of the decomposition reaction if 9.9 g $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are heated to give 5.5 g of PbO ?
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(s) \rightarrow 2 \mathrm{PbO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
a. 44%
b. 56%
c. 67%
d. 82%
19. Aluminum reacts with sulfuric acid to produce aluminum sulfate and hydrogen gas. How many grams of aluminum sulfate would be formed if $250 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ completely reacted with aluminum?
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
a. 0.85 g
b. 290 g
c. 450 g
d. 870 g
20. What is conserved in the reaction shown below?

$$
\mathrm{N}_{2}(g)+3 F_{2}(g) \rightarrow 2 \mathrm{NF}_{3}(g)
$$

a. only mass and atoms
d. only mass, atoms, moles, and molecules
b. only moles
e. only moles and molecules
c. only mass
21. Calculate the percent yield if 13.1 g of CaO is actually produced when 24.8 g of CaCO_{3} is heated?
CaCO_{3}--> $\mathrm{CaO}+\mathrm{CO}_{2}$
a. $\quad 13.9$
b. $\quad 10.6$
c. $\quad 90.1$
d. 94.2
22. Where can you find the numbers for the mole ratio?
a. On the periodic table
c. from the molar masses.
b. From the coefficients on a balanced
d. From the molar volumes equation
23. Which compound represents a molecular compound?
a. $\quad \mathrm{S}_{2} \mathrm{Br}_{6}$
b. KF
c. HBr
d. $\quad \mathrm{NaNO}_{3}$
24. Which compound represents an ionic compound?
a. $\quad \mathrm{SF}_{6}$
b. NaHCO_{3}
c. F_{2}
d. CH_{4}
25. How many moles of chlorine gas are contained in 9.03×10^{23} molecules?
a. $\quad 9.03$ moles
b. 6.02 moles
c. $\quad 2.0$ moles
d. 1.5 moles
26. What is the correct order of the following bonds in terms of decreasing polarity?
a. As-Cl, $\mathrm{N}-\mathrm{Cl}, \mathrm{P}-\mathrm{Cl}$
c. $\quad \mathrm{P}-\mathrm{Cl}, \mathrm{As}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}$
b. As-Cl, P-Cl, N-Cl
d. $\quad \mathrm{P}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}, \mathrm{As}-\mathrm{Cl}$
27. Which of the following is a correct Lewis structure for hydrogen cyanide, HCN?
a.

c.
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$
b.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:
$$

d.

28. Choose the correct electron configuration for phosphide ion.
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
c. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
29. What is the polarity of CHCl_{3} ?
a. nonpolar
c. polar
b. ionic
30. How many valence electrons are in an atom of magnesium?
a. 2
b. 5
c. 4
d. 3
31. Put the elements in period 2 on the periodic table in order of increasing ionization energy.
a. Li, Be, B, C, N, O, F, Ne
b. Ne, F, O, N, C, B, Be, Li
32.

Table of Common Molecules				
Name	Hydrogen	Chlorine	Ammonia	Methane
Molecular Formula	H_{2}	Cl_{2}	NH_{3}	CH_{4}

What type of bond do all of these compounds have in common?
a. covalent
c. hydrogen
b. ionic
d. metallic
33. Which force holds together a Calcium Chloride compound?
a. intramolecular
c. electrostatic
b. intermolecular
d. electronegativity
34. Convert $7.40 \times 10^{3} \mathrm{~g}$ to kg .
a. $\quad 7.40 \mathrm{~kg}$
b. $\quad 7.40 \times 10^{1} \mathrm{~kg}$
c. $\quad 7.40 \times 10^{2} \mathrm{~kg}$
d. $\quad 7.40 \times 10^{6} \mathrm{~kg}$
35. Convert $38^{\circ} \mathrm{C}$ to Kelvin.
a. $\quad 273 \mathrm{~K}$
b. $\quad 311 \mathrm{~K}$
c. 235 K
d. 0 K
36. The correct molar mass of molecular Iodine gas is \qquad .
a. $\quad 126.9$
b. 253.8
c. 254.0
d. 127.0
37. The element At could be classified as which of the following?
a. transition metal
c. alkali metal
b. noble gas
d. halogen
38. What is the measurement 1042 L rounded off to two significant digits?
a. $\quad 1.0 \times 10^{3} \mathrm{~L}$
b. $\quad 1040 \mathrm{~L}$
c. $\quad 1050 \mathrm{~L}$
d. $\quad 1.1 \times 10^{3} \mathrm{~L}$
39. What are the missing coefficients for the skeleton equation below?
$\mathrm{Cr}(s)+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{Fe}(s)+\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(a q)$
a. $4,6,6,2$
b. $2,3,2,3$
c. $2,3,3,2$
d. $1,3,3,1$
40. Iron has a density of $7.86 \mathrm{~g} / \mathrm{cm}^{3}$. The volume occupied by 55.85 g of iron is
a. $\quad 0.141 \mathrm{~cm}^{3}$
b. $\quad 7.11 \mathrm{~cm}^{3}$
c. $\quad 2.8 \mathrm{~cm}^{3}$
d. $439 \mathrm{~cm}^{3}$

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
41. What intermolecular forces are present between molecules of HCN?
a. Hydrogen Bonding
c. Dipole-Dipole
b. Dispersion
d. Ionic Bonding
42. What intermolecular forces are present in $\mathrm{CH}_{3} \mathrm{OH}$?
a. Dispersion
c. Ionic Bonding
b. Hydrogen Bonding
d. Dipole-Dipole

Practice Test Chapter 12

Answer Section

MULTIPLE CHOICE

1. ANS: B
2. ANS: B
3. ANS: C
4. ANS: B
5. ANS: D
6. ANS: A

KEY: density of a gas at STP; molar mass; molar volume
7. ANS: B PTS: 1 STA: 3a
8. ANS: D

PTS: 1
STA: 3a
KEY: Types of Reactions; Single Replacement
9. ANS: A
10. ANS: C ST 3

PTS: 1
11. ANS: C ST 3

PTS: 1
12. ANS: A

ST. 3
PTS: 1
13. ANS: C

ST 3
PTS: 1
14. ANS: A
15. ANS: A
16. ANS: B

OBJ: 12.3.1
PTS: 1
PTS: 1
PTS: 1
STA: 3d
KEY: Mass to Moles
17. ANS: A
18. ANS: D

OBJ: 12.3.2
19. ANS: B

OBJ: 12.2.2
20. ANS: A
21. ANS: D

STA: Ch.3.d
PTS: 1
PTS: 1
STA: Ch.3.f
PTS: 1
STA: Ch.3.d
PTS: 1
22. ANS: B

3
PTS: 1
23. ANS: A

ST 2A, 2B
PTS: 1
24. ANS: B

PTS: 1
DIF: 2
KEY: Ionic Compound Recognition
25. ANS: D
26. ANS: B
27. ANS: B
28. ANS: B
29. ANS: C
30. ANS: A

OBJ: 7.1.1
31. ANS: A
32. ANS: A

ST 2B
PTS: 1
33. ANS: C

PTS: 1
34. ANS: A

PTS: 1
35. ANS: B
36. ANS: B

PTS: 1
37. ANS: D

ST. 1.B
PTS: 1
38. ANS: A

OBJ: 3.1.3
39. ANS: C

OBJ: 11.1.3
40. ANS: B

OBJ: EK.1.A. 2
PTS: 1
DIF: L2
DIF: L2
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: Easy
REF: Section: 1.7

MULTIPLE RESPONSE

41. ANS: B, C
42. ANS: A, B, D

PTS: 1
PTS: 1

