Name:	Class:	Date:	ID: A
· · · · · · · · · · · · · · · · · · ·	Citiss.	Bute:	

Practice Final Spring 2016

Identify the choice that best completes the statement or answers the question.

- 1. What is the name of the ionic compound formed from lithium and bromine?
 - lithium bromine

c. lithium bromium

lithium bromide b.

- lithium bromate
- 2. Mercury can be obtained by reacting mercury(II) sulfide with calcium oxide. How many grams of calcium oxide are needed to produce 36.0 g of Hg?

 $4\text{HgS}(s) + 4\text{CaO}(s) \rightarrow 4\text{Hg}(l) + 3\text{CaS}(s) + \text{CaSO}_4$

a. 1.80 g

10.1 g

b. 7.56 g

- d. 13.4 g
- 3. If sulfur dioxide and oxygen can be made into sulfur trioxide, what is the reverse reaction? a. $2SO_3 \rightarrow 2SO_2 + O_2$
 - c. $2SO_2 + O_2 \rightarrow 2SO_3$

b. $SO_3 + O_2 \rightarrow SO_5$

- d. $SO_2 + 2SO_3 \rightarrow 3S + 4O_2$
- 4. Which of the following elements can form diatomic molecules held together by triple covalent bonds?
 - a. carbon

fluorine

b. oxygen

- d. nitrogen
- 5. If the hydrogen ion concentration of a solution is $10^{-10}M$, is the solution acidic, alkaline, or neutral?
 - acidic

c. neutral

b. alkaline

- The answer cannot be determined.
- 6. When the name of an anion that is part of an acid ends in -ite, the acid name includes the suffix ...
 - -ous a.

-ic

- d. -ite
- 7. In a particular reaction between copper metal and silver nitrate, 12.7 g Cu produced 38.1 g Ag. What is the percent yield of silver in this reaction?

 $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$

56.7%

88.2%

b. 77.3%

- 176%
- 8. When an acid reacts with a base, what compounds are formed?
 - a salt only

metal oxides only

b. water only

- a salt and water
- 9. Which of the following CANNOT be classified as a substance?
 - table salt

nitrogen

air

- gold
- 10. Why does a catalyst cause a reaction to proceed faster?
 - a. There are more collisions per second only.
 - b. The collisions occur with greater energy only.
 - c. The activation energy is lowered only.
 - d. There are more collisions per second and the collisions are of greater energy.
- 11. In which of the following groups of ions are the charges all shown correctly?
 - a. Li^- , O^{2-} , S^{2+}

c. K^{2-} , F^{-} , Mg^{2+}

b. Ca^{2+} , Al^{3+} , Br^{-}

d. Na⁺, I⁻, Rb⁻

Name	:			ID: A
	12.	Which of the following factors contributes to the period? a. an increase in the shielding effect b. an increase in the size of the nucleus c. an increase in the number of protons	ie in	crease in ionization energy from left to right across a
		d. fewer electrons in the highest occupied ene	••	
	13.	If you rewrite the following word equation as a symbol for fluorine be? nitrogen trifluoride → nitrogen + fluorine	bala	anced chemical equation, what will the coefficient and
		a. 6F ₂	c.	6F
		b. F ₃	d.	$3F_2$
	14.	What symbol is used for beta radiation?		
		a. ${}^{0}_{0}e$	c.	$_{0}^{-1}e$
		b. 0 -1 e	d.	⁻¹ ₋₁ e
	15.	Which of the following was originally a tenet o		alton's atomic theory, but had to be revised about a century
		ago?a. Atoms are tiny indivisible particles.b. Atoms of the same element are identical.		
		 c. Compounds are made by combining atoms d. Atoms of different elements can combine varios. 		one another in simple whole number
	16.	What is the correct formula for calcium dihydrona. CaH ₂ PO ₄	_	phosphate? $Ca(H_2PO_4)_2$
		b. $Ca_2H_2PO_4$	d.	$Ca(H_2HPO_4)_2$
	17.	When the following equation is balanced, what $Mg(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	is tl	ne coefficient for HCl?
		a. 6	c.	1
		b. 3	d.	2
	18.	1	_	
		a. 1 b. 2	c. d.	3 4
	19.			
	17.	a. tetrahedral	c.	four-cornered
		b. square	d.	planar
	20.			-
		a. ZnO		SO_2
		b. Xe	d.	BeF_2
	21.	2 ,	nce (dissolve faster in a solvent?
		a. agitating the solutionb. increasing the particle size of the solute		
		c. lowering the temperature		
		d. decreasing the number of particles		
	22.	What is the best description for a solution with	a hy	droxide-ion concentration of $1 \times 10^{-4} M$?
		a. acidic	c.	neutral
		b. basic	d.	The answer cannot be determined.

Name:

 23.	23. What is the electron configuration of potassium?		
	a. $1s^2 2s^2 2p^2 3s^2 3p^2 4s^1$ c. $1s^2 2s^2 3s^2 3p^6 3d^1$		
	b. $1s^2 2s^2 2p^{10} 3s^2 3p^3$ d. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$		
 24.	24. In an endothermic reaction at equilibrium, what is the effect of raising the	temperature?	
	a. The reaction makes more products. c. The reaction is uncha	•	
	b. The reaction makes more reactants. d. The answer cannot be	e determined.	
 25.			
	a. Hydrogen-2 has one more electron than hydrogen-1.		
	b. Hydrogen-2 has one neutron; hydrogen-1 has none.c. Hydrogen-2 has two protons; hydrogen-1 has one.		
	d. Hydrogen-2 has two protons; hydrogen-1 has one.d. Hydrogen-2 has one proton; hydrogen-1 has none.		
26.			
 20.	a. the mass of one electron		
	b. the mass of one helium-4 atom		
	c. the mass of one carbon-12 atom		
	d. one-twelfth the mass of one carbon-12 atom		
 27.	E		
	a. the density of the gas at STPb. the volume of a mole of the gasc. Avogadro's numberd. none of the above		
20			
 28.	2 3		
	a. nitrous oxideb. dinitrogen pentoxidec. nitrogen dioxided. nitrate oxide		
20			
 29.	29. How many significant figures are in the measurement 0.003 4 kg? a. two c. five		
	b. four d. This cannot be determ	nined.	
30.			
	true?		
	a. Protons, electrons, and neutrons are evenly distributed throughout the	volume of the	
	atom.		
	b. The nucleus is made of protons, electrons, and neutrons.c. Electrons are distributed around the nucleus and occupy almost all the	e volume of the	
	atom.	o volume of the	
	d. The nucleus is made of electrons and protons.		
 31.	31. The particles that are found in the nucleus of an atom are		
	a. neutrons and electrons c. protons and neutrons		
	b. electrons only d. protons and electrons		
 32.		er expressed in scientific notation?	
	a. 1.54×10^{12} m c. 1.54×10^{10} m		
	b. $1.54 \times 10^{-12} \text{ m}$ d. $1.54 \times 10^{-10} \text{ m}$		
 33.	33. How many energy sublevels are in the second principal energy level?		
	a. 1 c. 3		
21	b. 2 d. 4	tune of reaction?	
 34.	* 3 4 3 2 *		
	a. neutralization reaction c. decomposition reaction		
	b. combination reaction d. single-replacement re	action	

Name:

 35.	Which of the following formulas	represents an ionic	c compound?
	a. CS ₂	c.	N_2O_4
	b. BaI ₂	d.	PCl ₃
36.	What is transferred between a co	niugate acid-base i	pair?
	a. an electron	c.	a hydroxide ion
	b. a proton	d.	a hydronium ion
 37.	Which of the following is an INC $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$	CORRECT interpre	etation of the balanced equation shown below?
	a. $2 \text{ atoms } S + 3 \text{ molecules } O_2$	\rightarrow 2 molecules SO	
	b. $2 g S + 3 g O_2 \rightarrow 2 g SO_3$		
	c. $2 \text{ mol S} + 3 \text{ mol O}_2 \rightarrow 2 \text{ mod S}$	ol SO ₃	
	d. none of the above		
 38.	Each period in the periodic table	corresponds to	<u>_</u> .
	a. a principal energy level	c.	an orbital
	b. an energy sublevel	d.	a suborbital
 39.	Another name for the activated c	omplex is	
	a. energy barrier	c.	rate limiter
	b. transition state	d.	collision group
 40.	If E is the symbol for an element	, which two of the	following symbols represent isotopes of the same
	element?		
	1. $_{10}^{20}$ E 2. $_{11}^{20}$ E	3. ²	$^{1}_{9}E$ 4. $^{21}_{10}E$
	a. 1 and 2	c.	1 and 4
	b. 3 and 4	d.	2 and 3
41.	How many valence electrons are		Z and S
 т1.	a. 2	c.	6
	b. 4	d.	8
42.	Which of the following is NOT a		
 	a. air	C.	smoke
	b. heat	d.	water vapor
43.	Which of the following elements	has the smallest fi	•
	a. sodium	c.	potassium
	b. calcium	d.	magnesium
 44.	How do atoms achieve noble-gas	electron configura	ations in single covalent bonds?
	a. One atom completely loses t		
	b. Two atoms share two pairs of	of electrons.	
	c. Two atoms share two electrons	ons.	
	d. Two atoms share one electron	on.	
 45.	Symbols used in equations, toget	her with the explai	nations of the symbols, are shown below. Which set is
	correct?		
	a. (g), grams	c.	(aq), dissolved in water
	b. (<i>l</i>), liters	d.	(s), solid product

 46.	Which of the following represents a Brønsted	-Low	ry conjugate acid-base pair?
	a. SO_3^{2-} and SO_2	c.	H_3O and H_2
	b. CO_3^{2-} and CO	d.	NH ₄ ⁺ and NH ₃
 47.	Which state of matter takes both the shape an	d volu	ume of its container?
	a. solid	c.	gas
	b. liquid	d.	both b and c
 48.			-
	a. 0°C	c.	
4.0	b. 37°C	d.	273°C
 49.	E		
	a. sulfurb. chlorine	c. d.	selenium bromine
50.			bronnine
 50.	a. positions on the periodic table	·	atomic numbers
	b. chemical behavior	d.	mass numbers
51.		solved	
 01.	a. equilibrium constant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	b. equilibrium constant times the concentra	tion o	f water
	c. equilibrium constant divided by the conc	entrat	ion of water
	d. equilibrium constant times the equilibriu	m con	stant of water
52.	Using the periodic table, determine the number	er of r	neutrons in ¹⁶ O.
	a. 4	c.	16
	b. 8	d.	24
 53.	What particle decomposes to produce the elec-	ctron o	of beta radiation?
	a. proton	c.	electron
	b. neutron	d.	positron
 54.	1 1		
	a. time/mass	c.	energy/time
	b. number/time	d.	time/energy
 55.	What are the coefficients that will balance the $AlCl_3 + NaOH \rightarrow Al(OH)_3 + NaCl$	skele	eton equation below?
	a. 1, 3, 1, 3	C	1, 1, 1, 3
	b. 3, 1, 3, 1		1, 3, 3, 1
 56.	Which of the following measurements is expr		
	a. 0.007 m	c.	$7.30 \times 10^{-7} \text{ km}$
	b. 7077 mg	d.	0.070 mm
 57.	•	llest i	onic radius?
	a. Li	c.	O
	b. K	d.	S
 58.	What is the number of moles of solute in 250	mL o	f a 0.4M solution?
	a. 0.1 mol	c.	0.62 mol
	b. 0.16 mol	d.	1.6 mol

 59.	How many moles of H ₃ PO ₄ are produced whe	n 71	$0 \text{ g P}_4\text{O}_{10}$ reacts completely to form H_3PO_4 ?
	$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$		
	a. 0.063 5 mol	c.	4.00 mol
	b. 1.00 mol	d.	16.0 mol
 60.	When radium-226 (atomic number 88) decays	by e	mitting an alpha particle, it becomes
	a. polonium-222	c.	radium-222
	b. polonium-224	d.	radon-222
 61.	•	of rea	actants compared with the rate of production of products?
	a. much higher	c.	the same
	b. higher	d.	lower
 62.			uation for the incomplete combustion of heptene, C ₇ H ₁₄ ?
	, 1.		$2C_7H_{14} + 21O_2 \rightarrow 14CO_2 + 14H_2O$
	b. $C_7H_{14} + 7O_2 \rightarrow 7CO + 7H_2O$	d.	$C_7H_{14} + O_2 \rightarrow C_7O_2 + 7H_2$
 63.	What is the molarity of 200 mL of solution in v	whic	h 2.0 moles of sodium bromide is dissolved?
	a. 2.0 <i>M</i>	c.	0.40M
	b. 10 <i>M</i>	d.	4.0M
 64.	How is the number of neutrons in the nucleus of		
	a. Add the number of electrons and protons t		
	b. Subtract the number of electrons from the		-
	c. Subtract the number of protons from the n		
<i>(5</i>	d. Add the mass number to the number of ele		
 65.	What mass of Na ₂ SO ₄ is needed to make 2.5 I		
	a. 178 g		356 g
	b. 284 g	d.	
 66.	What types of atomic orbitals are in the third p a. s and p only		s, p, and d only
	b. p and d only	d.	-
67.	Which of the following is a property of an acid		s, p, u, und j
 07.	a. sour taste	c.	strong color
	b. nonelectrolyte	d.	unreactive
68.	What type of ions have names ending in -ide?		
	a. only cations	c.	only metal ions
	b. only anions	d.	only gaseous ions
 69.	When the equation $KClO_3(s) \rightarrow KCl(s) + O_2(s)$	g) is	balanced, the coefficient of KClO ₃ is
	a. 1	c.	3
	b. 2	d.	4
 70.	What is true about the molar mass of chlorine	gas?	
	a. The molar mass is 35.5 g.		
	b. The molar mass is 71.0 g.		1 6 11 1
	c. The molar mass is equal to the mass of on	e mo	ole of chlorine atoms.
71	d. none of the above	ha	rookset?
 71.	Which of the forces of molecular attraction is t a. dipole interaction	ne w c.	hydrogen bond
	a. dipole interactionb. dispersion	d.	single covalent bond
		٠.	

 72.	What is the effect of adding more water to the	follo	wing equilibrium reaction?
	$CO_2 + H_2O \longrightarrow H_2CO_3$		
	a. More H ₂ CO ₃ is produced.		
	b. CO ₂ concentration increases.		
	c. The equilibrium is pushed in the direction	of re	eactants.
	d. There is no effect.		
 73.			
	a. H_3O^+ and H_2O	c.	OH ⁺ and H ⁻
	b. OH ⁻ and OH ⁺	d.	OH ⁻ and H ⁺
 74.			
	a. positively charged, with the number of probb. negatively charged, with the number of ele		
	c. neutral, with the number of protons equali		- ·
	d. neutral, with the number of protons equali	_	
	the number of neutrons		
 75.		elen	nent reacts with a compound to form a new compound and
	a different element is a a. combination reaction	c.	single-replacement reaction
	b. decomposition reaction	d.	double-replacement reaction
76	In a neutral solution, the [H ⁺] is		1
 , 0.	a. $10^{-14}M$	c.	$1 \times 10^7 M$
	b. zero	d.	
 77.	The equation $2C_3H_7OH + 9O_2 \rightarrow 6CO_2 + 8H$	20 is	•
	a. combustion reaction	c.	double-replacement reaction
	b. single-replacement reaction	d.	decomposition reaction
 78.	1 0	ioniz	_
	a. soft tissue	C.	wood
70	b. paper	d.	lead
 79.	Atomic size generally a. increases as you move from left to right ac	cross	a period
	b. decreases as you move from top to bottom		•
	c. remains constant within a period		
	d. decreases as you move from left to right a		a period
 80.			EC
	a. S ₂ F ₆		F_6S_2
	b. F_6SO_3	d.	SF_6
 81.	-	the e	element, the number of protons, and the number of
	electrons given correctly?	0	Co 55 protons 122 0 alastrons
	a. In, 49 protons, 49 electronsb. Zn, 30 protons, 60 electrons	c. d.	Cs, 55 protons, 132.9 electrons F, 19 protons, 19 electrons
82.	-		-
	a. 0.075 cm	c.	7.5 cm
	b. 0.75 cm	d.	70.5 cm

Name:	

 83.	Which of the following is a physical change?		
	a. corrosion		evaporation
0.4	b. explosion		rotting of food
 84.	What is the electron configuration of the calcium		
			$1s^2 2s^2 2p^6 3s^2 3p^5 4s^1$
	b. $1s^2 2s^2 2p^6 3s^2 3p^4 4s^2$	d.	$1s^2 2s^2 2p^6 3s^2$
 85.	Which of the following reactions illustrates amp		
	a. $H_2O + H_2O \longrightarrow H_3O^+ + OH^-$	c.	$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$
	b. $NaC1 \rightleftharpoons Na^+ + OH^-$	d.	$NaOH \longrightarrow Na^+ + OH^-$
 86.	Which of the following correctly shows a prefix corresponding number?	c use	ed in naming binary molecular compounds with its
	a. <i>deca</i> -, 7		hexa-, 8
o -	b. <i>nona-</i> , 9		octa-, 4
 87.			
	a. ¹⁹ ₉ F has 0 neutrons.		²⁴ ₁₂ Mg has 24 neutrons.
	b. $_{33}^{75}$ As has 108 neutrons.	d.	$^{238}_{92}$ U has 146 neutrons.
 88.	Iron(III) oxide is formed when iron combines w	ith (oxygen in the air. How many grams of Fe_2O_3 are formed
	when 16.7 g of Fe reacts completely with oxyge $4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s)$	en?	
	a. 12.0 g		47.8 g
	b. 23.9 g		95.6 g
 89.		IH_3	(g). What is the effect of decreasing the volume on the
	contained gases?		
	a. The reaction shifts toward the product gas.b. The system reacts by increasing the numbe	r of	gas molecules
	c. The pressure on the gases decreases mome		
	d. Ammonia is consumed in the reaction.		
 90.	What causes water molecules to have a bent sha	_	· · · · · · · · · · · · · · · · · · ·
	a. repulsive forces between unshared pairs of		
	b. interaction between the fixed orbitals of thec. ionic attraction and repulsion	e un	shared pairs of oxygen
	d. the unusual location of the free electrons		
91.	This symbol () indicates that		
	a. heat must be applied		
	b. an incomplete combustion reaction has occ	urre	ed
	c. a gas is formed by the reactiond. the reaction is reversible		
92.	What is the electron configuration of the iodide	ion	2
 <i>3</i> ∠.	-	1011	•
	a. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$		

b. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10}$ c. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2$

d. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$

 93.	1 1	ne _	·
	a. mass of each electron in that element		
	b. mass of each isotope of that element		
	c. relative abundance of protons in that eleme		
	d. mass and relative abundance of each isotop		
 94.	Lead nitrate can be decomposed by heating. Wh Pb(NO ₃) ₂ are heated to give 5.5 g of PbO?	at i	s the percent yield of the decomposition reaction if 9.9 g
	$2\text{Pb(NO}_3)_2(s) \to 2\text{PbO}(s) + 4\text{NO}_2(g) + \text{O}_2(g)$		
	a. 44%	c.	67%
	b. 56%	d.	82%
95.	What happens to a catalyst in a reaction?		
		c.	It is incorporated into the reactants.
	_	d.	It evaporates away.
96.		nts i	-
	· · · · · · · · · · · · · · · · · · ·		$^{84}_{38}$ M $^{86}_{38}$ M $^{87}_{38}$ M
	b. $^{50}_{19}L$ $^{50}_{20}L$ $^{50}_{21}L$	d.	$^{138}_{59}$ Q $^{133}_{55}$ Q $^{133}_{54}$ Q
 97.	The charge on a gamma ray is		
	a. +2	c.	0
	b. +1	d.	-2
 98.	Which of the following is a heterogeneous mixt	ure	?
	a. air	c.	steel
	b. salt water	d.	soil
 99.	What is the charge on the hydronium ion?		
		c.	0
	b. 2-	d.	1+
 100.	Isotopes of the same element have different	_•	
	a. numbers of neutrons	c.	numbers of electrons
	b. numbers of protons	d.	atomic numbers
 101.	The equation $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq)$	+ H	$_{2}(g)$ is an example of which type of reaction?
		c.	decomposition reaction
		d.	double-replacement reaction
 102.	The atomic number of an element is the total nu	mb	<u>*</u>
	a. neutrons	c.	electrons
	1	d.	protons and electrons
 103.	•	6 m	
	a. 6M	c.	7 <i>M</i>
		d.	3M
 104.			
		c.	H
		d.	I
 105.		-	•
		c.	malleability and hardness
	b. melting and boiling points	d.	all of the above

Name:	
-------	--

106.	Which of the following statements correctly compares the relative size of an ion to its neutral atom?						
	a. The radius of an anion is greater than the radius of its neutral atom.b. The radius of an anion is identical to the radius of its neutral atom.						
	b. The radius of an anion is identical to thec. The radius of a cation is greater than the						
	d. The radius of a cation is identical to the						
107.							
	a. ² ₁ He	c.	⁴ ₁ He				
	b. ² ₂ He	d.	⁴ ₂ He				
108.	The nucleus of an atom is						
	a. the central core and is composed of protons and neutrons						
	b. positively charged and has more protons than neutrons						
	c. negatively charged and has a high densid. negatively charged and has a low densit	-					
109.	A process that absorbs heat is a(n)	.5					
	a. endothermic process	c.	exothermic process				
	b. polythermic process	d.	ectothermic process				
110.	When dissolved in water, acids produce	_•					
	a. negative ions	C.	hydrogen ions				
111	b. polyatomic ions	d.	oxide ions				
111.	What is thought to cause the dispersion force a. attraction between ions	c.	sharing of electron pairs				
	b. motion of electrons	d.	differences in electronegativity				
112.							
	The atomic mass of an element is the a. total number of subatomic particles in its nucleus						
	b. weighted average of the masses of the isotopes of the elementc. total mass of the isotopes of the element						
	c. total mass of the isotopes of the elementd. average of the mass number and the atom		mber for the element				
112	How many moles of tungsten atoms are in 4.						
113.	a. 8.0×10^2 moles		1.3×10^{-1} moles				
111	b. 8.0×10^1 moles		1.3×10^{-2} moles				
114.	What particle is needed to complete the following nuclear equation?						
	$^{56}_{25}\text{Mn} \rightarrow \underline{\qquad} + ^{0}_{-1}\text{e}$						
	a. $\frac{56}{27}$ Co	c.	⁵⁶ ₂₆ Fe				
	b. $\frac{27}{25}$ Mn	d.	$^{58}_{24}$ Cr				
115.	The least penetrating form of radiation is	·					
	a. beta radiation	c.	alpha radiation				
116	b. gamma radiation	d.	X rays				
116.	What particle is emitted in alpha radiation? a. electron	c.	helium nucleus				
	a. electronb. photon	d.	hydrogen nucleus				
117.							
	a. three feet of concrete	c.	single sheet of aluminum foil				
	b. three inches of lead	d.	single sheet of paper				

Name: _____

ID: A

118.	Wl	hat is the volume, in liters, of 0.500 mol of C	C_3H_8	gas at STP?
	a. b.	0.0335 L 11.2 L	c. d.	
119.	Wl	hich of the following correctly represents an	ion	pair and the ionic compound the ions form?
	a.	Ca ²⁻ , F ⁻ ; CaF ₂	c.	$Ba^{2+}, O^{2-}; Ba_2O_2$
	b.	Na ⁺ , Cl ⁻ ; NaCl ₂	d.	Pb ⁴⁺ , O ²⁻ ; Pb ₂ O ₄
120.	Wl	hich of the following measurements contains	s two	significant figures?
	a.	0.004 00 L	c.	
	b.	0.004 04 L	d.	0.004 40 L
121.	In	a concentrated solution there is		
	a.	no solvent	c.	a small amount of solute
	b.	a large amount of solute	d.	no solute
122.	Wl	hich of the following is true about homogene	eous	mixtures?
	a.	They are known as solutions.		
	b.	3		
	c.	J 1		
	d.	They are always liquids.		
123.	Wl	hat characterizes a strong acid or base?		
	a.			
	b.	F		
	c.	\mathcal{E}		
		presence of a hydroxide or hydrogen ion		
124.		hat causes dipole interactions?		
	a.			
	b.	1	4	a sunch and all atmost main
	c. d.	bonding of a covalently bonded hydrogen attraction between ions	to ai	n unsnared electron pair
105				9
125.		hat does the symbol Δ in a chemical equation		
	a. b	Heat is supplied to the reaction. A catalyst is needed.	c. d.	yields precipitate
100	b.	•		1 1
120.		hat is the electron configuration of the galliu		
				$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6$
	b.	$1s^2 2s^2 2p^6 3s^2 3p^5 4s^1$	d.	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$
127.	Ho	w many valence electrons are in an atom of	pho	sphorus?
	a.	2	c.	
	b.	3	d.	5
128.	Wl	hat is the correct name for the compound Co	Cl_2	?
	a.	cobalt(I) chlorate	c.	cobalt(II) chlorate
	b.	cobalt(I) chloride	d.	cobalt(II) chloride
129.	Wl	hich of the following is true about subatomic	e par	ticles?
	a.	Electrons are negatively charged and are t	•	
	b.	subatomic particle.		
	c.	Neutrons have no charge and are the lighte		-
	d.	The mass of a neutron nearly equals the m		-

ID: A

130.	What is the molar mass of $(NH_4)_2CO_3$?		
	a. 144 g		96 g
131.	b. 138 g When iron rusts in air iron(III) oxide is produc		78 g How many moles of oxygen react with 2.4 mol of iron in
131.	the rusting reaction?	cu. i	Tiow many moles of oxygen react with 2.4 mol of non in
	$4Fe(s) + 3O_2(g) \rightarrow 2Fe2O_3(s)$		
	a. 1.2 mol		2.4 mol
122	b. 1.8 mol	d.	3.2 mol
132.	What are the acids in the following equilibrium $CN^- + H_2O \longrightarrow HCN + OH^-$	rea	ction?
		C	CN ⁻ , OH ⁻
	<u>-</u>	c.	
122	b. H ₂ O, HCN	d.	H_2O, OH^-
133.	An element has an atomic number of 76. The n element are	umb	er of protons and electrons in a neutral atom of the
	a. 152 protons and 76 electrons	c.	38 protons and 38 electrons
	b. 76 protons and 0 electrons	d.	76 protons and 76 electrons
134.	Emission of light from an atom occurs when an		ctron
	a. drops from a higher to a lower energy leveb. jumps from a lower to a higher energy leve		
	c. moves within its atomic orbital		
105	d. falls into the nucleus		
135.	which of the following electron configurations the carbon atom in the molecule methane (CH ₄	_	es the correct arrangement of the four valence electrons of
	·		1 2 1
	a. $2s^2 2p^2$		$2s^{1}2p^{2}3s^{1}$
	b. $2s^1 2p^1 3s^1$		$2s^1 2p^3$
136.	A molecule with a single covalent bond isa. CO ₂	_· с.	CO
	b. Cl ₂		N_2
107	-		2
13/.	What is the maximum number of electrons in the a. 2		18
	b. 8	d.	32
138.	What is the equilibrium constant for the follow	ing 1	reaction?
	$C + O_2 \longrightarrow CO_2$		
	a. $\frac{[C][O_2]}{[CO_2]}$	c.	$\frac{\left[\mathrm{C}\right]^{2}\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{CO}_{2}\right]^{2}}$
	" [CO ₂]	C.	$[CO_2]^2$
	$[CO_2]$		$[CO_2]^2$
	b. $\frac{[CO_2]}{[C][O_2]}$	d.	$\frac{\left[\mathrm{CO}_{2}\right]^{2}}{\left[\mathrm{C}\right]^{2}\left[\mathrm{O}_{2}\right]^{2}}$
139.	Why do atoms share electrons in covalent bond	ls?	2-
10).	a. to become ions and attract each other		
	b. to attain a noble-gas electron configuration	ı	
	c. to become more polar		

d. to increase their atomic numbers

Name:	 ID: A

140.	A substance with a K_a of 1×10^{-5} would	favor whi	ch side of a reaction?				
	a. products	b.	reactants				
141.	Which type of solution is one with a pH o	of 8?					
	a. acidic						
	b. basic						
	c. neutral	1					
	d. The type varies, depending on the sol						
142.	The $K_{\rm eq}$ of a reaction is 4×10^{-7} . At equil	librium, tl	ne				
	a. reactants are favored						
	b. products are favored						
	c. reactants and products are present in	_					
1.42	d. rate of the forward reaction is much g						
143.	The atomic number of an element is the to a. neutrons	c.	electrons				
	b. protons	d.	protons and electrons				
144	What is the number of electrons in the out						
	a. 2	c.	6				
	b. 4	d.	8				
145.	What is the molarity of a solution contain	ing 7.0 m	oles of solute in 569 mL of solution?				
	a. 81 <i>M</i>	c.	12 <i>M</i>				
	b. 0.081 <i>M</i>	d.	4.0M				
146.	, and the second se	-	-				
	a. the atomic number	C.	the sum of the protons and electrons				
1.47	b. the mass number	d.	twice the number of protons				
147.	Dalton's atomic theory included which ide a. All atoms of all elements are the sam						
	b. Atoms of different elements always of		n one-to-one ratios.				
	c. Atoms of the same element are always identical.						
	d. Individual atoms can be seen with a r	microscop	oe.				
148.	How many liters of hydrogen gas are need	ded to rea	ct with CS ₂ to produce 2.50 L of CH ₄ at STP?				
	$4H_2(g)+CS_2(l) \rightarrow CH_4(g)+2H_2S(g)$						
	a. 2.50 L	c.	7.50 L				
	b. 5.00 L		10.0 L				
149.	Why do chemists use relative masses of a	toms com	pared to a reference isotope rather than the actual masses				
	of the atoms?						
	-	_	mpared to the actual mass of a proton.				
	b. The actual masses of atoms are very						
	c. The number of subatomic particles ind. The actual masses of protons, electro						
150.			eurons are not known.				
130.	Which statement is true about electronegativity? a. Electronegativity is the ability of an anion to attract another anion.						
	b. Electronegativity generally increases as you move from top to bottom within a group.						
	c. Electronegativity generally is higher for metals than for nonmetals.						
	d. Electronegativity generally increases						

_ 151. Aluminum reacts with sulfuric acid to produce aluminum sulfate and hydrogen gas. How many grams of aluminum sulfate would be formed if 250 g H₂SO₄ completely reacted with aluminum? $2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$ a. 0.85 g 450 g b. 290 g d. 870 g __ 152. Which of the following was NOT among Democritus's ideas? a. Matter consists of tiny particles called atoms. b. Atoms are indivisible. Atoms retain their identity in a chemical reaction. d. Atoms are indestructible. _ 153. If 20.0 grams of Ca combines completely with 16.0 grams of S to form a compound, what is the percent composition of Ca in the compound? a. 1.25% 44.4% 55.6% b. 20.0% _ 154. Which of the changes listed below would shift the following reaction to the right? $4HCl(g) + O_2(g) = 2Cl_2(g) + 2H_2O(g)$ a. addition of Cl₂ c. increase of pressure b. removal of O₂ d. decrease of pressure $\underline{}$ 155. How many grams of H_3PO_4 are produced when 10.0 moles of water react with an excess of P_4O_{10} ? $P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$ a. 1.22 g c. 147 g b. 6.7 g 653 g 156. Which of the following elements has the lowest electronegativity? a. lithium bromine b. carbon d. fluorine _ 157. Which of the following diatomic molecules is joined by a double covalent bond? c. N₂ a. O, d. He, b. Cl₂ __ 158. What particle is needed to complete this nuclear reaction? $^{222}_{86}$ Rn $\rightarrow ^{218}_{84}$ Po + _____

a. ⁴₂He

 ^{1}H c.

b. $_{-1}^{0}$ e

 $^{1}_{0}$ n

_ 159. What is conserved in the reaction shown below?

 $N_2(g) + 3F_2(g) \rightarrow 2NF_3(g)$

atoms only

mass and atoms only

b. mass only

moles only d.

_ 160. How many protons, electrons, and neutrons does an atom with atomic number 50 and mass number 125 contain?

a. 50 protons, 50 electrons, 75 neutrons

120 neutrons, 50 protons, 75 electrons

b. 75 electrons, 50 protons, 50 neutrons

70 neutrons, 75 protons, 50 electrons

___ 161. The quantity of heat required to change the temperature of 1 g of a substance by 1 °C is defined as _____.

a joule a.

a calorie

specific heat

density

Name:

ID: A

162.	. The molar mass of a certain gas is 49 g. What is the density of the gas in g/L at STP?					
163.	a. 3.6×10^{-24} g/L b. 0.46 g/L The reaction 2Fe + 3Cl ₂ \rightarrow 2FeCl ₃ is an expression of the second secon	d.	2.2 g/L 71 g/L of which type of reaction?			
	a. combustion reactionb. single-replacement reaction	c. d.	combination reaction decomposition reaction			
164.	What is the correct name for the N ³⁻ ion? a. nitrate ion b. nitrogen ion 	c. d.	nitride ion nitrite ion			
165.			react completely with 3.6 liters of hydrogen to form			
	a. 1.8 L b. 3.6 L	c. d.	2.0 L 2.4 L			
166.						
100.	Which of the following is true about the total number of reactants and the total number of products in the reaction shown below?					
	$C_5H_{12}(l) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$)				
	 a. 9 moles of reactants chemically chang b. 9 grams of reactants chemically chang c. 9 liters of reactants chemically change d. 9 atoms of reactants chemically change 	ge into 11 e into 11	grams of product. liters of product.			
167.	Which of the following is necessary to calca. the atomic mass of carbon-12 b. the atomic number of the element					
	c. the relative masses of the element's prd. the masses of each isotope of the elem		d neutrons			
168.	What is the percent by mass of carbon in a		C ₃ H ₆ O?			
	a. 20.7%		1.61%			
	b. 62.1%	d.	30.0%			
169.	Which of the following isotopes has the san					
	a. $^{32}_{15}P$		²⁹ ₁₄ Si			
	b. $^{32}_{16}S$	d.	²⁸ ₁₄ Si			
170.	All atoms of the same element have the sar	me				
	a. number of neutrons	c.	mass numbers			
171	b. number of protons	d.	mass			
171.	All of the following are physical properties a. mass	c.	melting point			
	b. color	d.	ability to rust			
172.	A catalyst works by					
	a. lowering the activation energy barrier	1				
	b. shifting the equilibrium position towar		oducts			
	c. changing the temperature of the reacta					

b. endothermic

_ 173.	-	n of lea	ad nitrate. How many grams of oxygen are produced when
	11.5 g NO ₂ is formed? $\frac{2DF(NO_2)}{2} = \frac{2DFO(2)}{2} + \frac{4NO_2(2)}{2} + \frac{6}{2} = \frac{1}{2}$	(-)	
	$2\text{Pb}(\text{NO}_3)_2(s) \to 2\text{PbO}(s) + 4\text{NO}_2(g) + \text{O}_2(g)$		2.00
	a. 1.00 g b. 2.00 g		2.88 g 32.0 g
174.	What are the missing coefficients for the ske		
	$\operatorname{Cr}(s) + \operatorname{Fe}(\operatorname{NO}_3)_2(aq) \to \operatorname{Fe}(s) + \operatorname{Cr}(\operatorname{NO}_3)_3(aq)$		quanton coloni.
	a. 4, 6, 6, 2		2, 3, 3, 2
	b. 2, 3, 2, 3		1, 3, 3, 1
 _ 175.	To what element does polonium-208 (atomic		
	a. $\frac{210}{82}$ Pb		$^{204}_{82}$ Pb
	b. $\frac{^{210}}{^{82}}$ Po	d.	$^{214}_{86}$ Rn
_ 176.	Which of these solutions is the most basic?		
	a. $[H^+] = 1 \times 10^{-2} M$		$[H^+] = 1 \times 10^{-11} M$
	b. $[OH^-] = 1 \times 10^{-4} M$	d.	$[OH^{-}] = 1 \times 10^{-13} M$
 _ 177.	What happens to a reaction at equilibrium when the state of the state		· · · · · · · · · · · · · · · · · · ·
	a. The reaction makes more products.	C.	The groups assess the determined
178.	b. The reaction makes more reactants.	d.	The answer cannot be determined.
 _ 1/0.	A vapor is which state of matter? a. solid	c.	gas
	b. liquid	d.	all of the above
_ 179.	A piece of metal is heated, then submerged is	n cool	water. Which statement below describes what happens?
	a. The temperature of the metal will increa		
	b. The temperature of the water will decree		
	c. The temperature of the water will decread. The temperature of the water will increa		the temperature of the metal will decrease.
_ 180.			the temperature of the mean war between
	a. photon	c.	helium nucleus
	b. electron	d.	hydrogen nucleus
 _ 181.	If the temperature of a piece of steel decrease	es, wha	at happens to its density?
	a. The density decreases.		
	b. The density increases.c. The density does not change.		
	d. The density first increases, then decrease	es.	
182.	How many joules are in 148 calories?		
	a. 35.4 J	c.	6.61 J
	b. 619 J	d.	148 J
 _ 183.		_	m °C. How much heat is needed to change the temperature
	of a 60.0-gram sample of copper from 20.0 % a. 720 J	C to 60 c.	0.0 °C? 480 J
	b. 1200 J	d.	960 J
101		u.	7000
 _ 184.	The ΔH is positive the reaction is a. exothermic		

Name: _____

ID: A

__ 185. Which of the following examples represent an exothermic reaction?

- a. cooking food
- b. freezing water

____ 186. What is the amount of heat required to raise the temperature of 200.0 g of aluminum by 10°C? (specific heat

of aluminum = $0.21 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$)

a. 4.200 x 10² cal

c. 4.2 x 10² cal

b. 4.12 x 10⁻² cal

d. 4.20×10^3 cal

____ 187. How much heat needs to be absorbed by 100.0 g of water at 5.0°C to raise its temperature to 75.0°C?

a. $3.0 \times 10^4 \text{ J}$

c. $2.93 \times 10^4 \text{ J}$

b. $1.57 \times 10^5 \text{ J}$

d. 2.926 x 10⁴ J

____ 188. What is the specific heat of a substance if 1560 cal are required to raise the temperature of a 312-g sample by 15°C?

a. $1.33 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

c. $0.330 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

b. $0.33 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

d. $0.033 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

____ 189. Which of the following is NOT a form of energy?

a. light

c. heat

b. electricity

d. pressure

_ 190. Dtermine the ΔH for the reaction.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) + 197.8 \text{ kJ}$$

____ 191. Using the graph below, choose the correct formula to find the amount of heat change from E to F.

a. $Q = mC\Delta T$

d. $Q = m - \Delta H f u s$

b. $Q = m\Delta H vap$

e. $Q = m\Delta Hfus$

c. $Q = m - \Delta H vap$

____ 192. Choose the correct formula to find the amount of heat change at A.

a. $Q = m\Delta H vap$

d. $Q = m\Delta H f u s$

b. $Q = mC\Delta T$

e. $Q = m-\Delta H f u s$

c. $Q = m-\Delta H vap$

____ 193. The following graph represents what type of reaction?

a. exothermic

b. endothermic

____ 194. The orbital diagram for a ground-state nitrogen atom is

- A. $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \uparrow$ $\uparrow \uparrow$
- c. <u>↑</u> <u>↑</u> <u>↑</u> <u>↑</u> <u>↑</u>
- $D. \ \, \stackrel{\uparrow \downarrow}{\longrightarrow} \ \ \, \stackrel{\uparrow \downarrow}{\longrightarrow} \ \, \stackrel{\uparrow}{\longrightarrow} \ \, \stackrel{\downarrow}{\longrightarrow} \ \, \stackrel{\uparrow}{\longrightarrow} \ \, \stackrel{\downarrow}{\longrightarrow} \ \, \stackrel$
- a. A
- b. B
- c. C
- d. D

____ 195. Which ground-state atom has an electron configuration described by the following orbital diagram?

[Ne]
$$\frac{\uparrow\downarrow}{3s}$$
 $\frac{\uparrow}{3p}$ $\frac{\uparrow}{3p}$

- a. phosphorus
- b. nitrogen
- c. arsenic
- d. vanadium
- ____ 196. Using the diagram below, what will you see on the right of the prism?

a. a continuous spectrum

- b. spectral lines
- _ 197. Using the diagram below, which electromagnetic radiation would release the most energy?

- a. radio waves
- b. infrared

- c. x-rays
- d. gamma rays

Name:

ID: A

____ 198. Using the diagram below, which of the following electromagnetic waves have the lowest frequencies?

- a. ultraviolet light waves
- b. X-rays

- c. microwaves
- d. gamma rays

_ 199. Which of the following quantum leaps would be associated with the greatest energy of emitted light?

- a. n = 5 to n = 1
- b. n = 4 to n = 5

- c. n = 2 to n = 5
- d. n = 5 to n = 4

_ 200. Which color of visible light has the longest wavelength?

a. red

c. blue

b. green

d. violet

201. Arrange the following elements: P³⁻, S²⁻, K⁺, Ca²⁺, Sc³⁺, in order of increasing ionic size.

a. Sc^{3+} , Ca^{2+} , K^+ , P^{3-} , S^{2-}

c. K+, Ca²⁺, Sc³⁺, S²⁻, P³⁻

b. P^{3-} , S^{2-} , K^+ , Ca^{2+} , Sc^{3+}

d. Sc³⁺, Ca²⁺, K⁺, S²⁻, P³⁻

_ 202. Choose the correct noble gas electron configuration for Plutonium

a. [Rn] $7s^2 5f^5 6d^1$

c. [Rn] 7s ² 5f⁵

b. [Xe] 7s ² 5f⁵ 6d¹

d. [Xe] $7s^2 5f^6$

____ 203. The equilibrium constant expression for the reaction: $N_2(g) + O_2(g) \stackrel{\checkmark}{=} 2NO(g)$ is

- a. $K_{eq} = 2[NO]/[N_2][O_2]$
- b. $K_{eq} = [N_2][O_2]/2[NO]$
- c. $K_{eq} = [NO]^2/[N_2][O_2]$
- d. $K_{eq} = [N_2][O_2]/[NO]^2$

____ 204. Where is the transition state in the diagram below?

a. A

b. B

c. C

d. D

____ 205.

pH Levels

[H ₃ 0+]	pH	Example
1 x 100	0	HCI (4%)
1 x 10 ⁻¹	-1	Stomach acid
1 x 10 ⁻²	2	Lemon juice
1 x 10 ⁻³	3	Vinegar
1 x 10 ⁻⁴	4	Soda
1 x 10 ⁻⁵	5	Rainwater
1 x 10 ⁻⁶	6	Milk
1 x 10 ⁻⁷	7	Pure water
1 x 10 ⁻⁸	8	Egg whites
1 x 10 ⁻⁹	9	Baking soda
1 x 10 ⁻¹⁰	10	Ammonia
1 x 10 ⁻¹¹	11	
1 x 10 ⁻¹²	12	Drain cleaner
1 x 10 ⁻¹³	13	NaOH (4%)
1 x 10 ⁻¹⁴	14	

Which substance is the most acidic?

a. Milk

b. HCl

c. Lemon juice

d. Baking soda

____ 206. An analysis of the equilibrium mixture in a 1-L flask gives the following results: [HCl] = .30 mol, $[O_2] = .20$ mol, $[H_2O] = 1.2$ mol, and $[Cl_2] = .60$. Calculate the equilibrium constant given the concentrations.

$$4HCl(g) + O_2(g) < ---> 2H_2O(g) + 2Cl_2(g) + 10kJ$$

a. 3.2×10^2

c. 2.2×10^2

b. 0.51

d. 1.6

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

____ 207. Which element(s) are in the unknown?

Below are diagrams for the bright line spectra of four elements and the spectrum of a mixture of unknown gases.

a. Li

c. He

b. H

- d. Na
- 208. Which of the following are strong acids (choose all that apply)?
 - a. HCN

d. H_2SO_3

b. HBr

209.

e. HNO₃

- c. HClO₄
- Which of the following are strong bases (choose all that apply)?
- a. Ca(OH)2

c. NH3

b. Al(OH)3

- d. LiOH
- ____ 210. Which structural formulas represent nonpolar molecules? Choose all that apply
 - a. SiO_2

c. CFH₃

o. NH₃

- d. C_2H_2
- ___ 211. What intermolecular forces are present in HNO? Choose all that apply
 - a. Dispersion

c. Hydrogen Bonding

b. Dipole-Dipole

- d. Ionic Bonding
- __ 212. Which of the following will conduct electricity, dissociate completely and produce a bright light? Choose all that apply.
 - a. strong acid

c. weak base

b. weak acid

d. strong base

Problem

213. Which of the following pictures best represents an exothermic reaction?

214. Which graph belows represents the following reaction?

 $Al(s) + O_2(g) + energy <--> Al_2O_3(g)$

- 1: A
- 2: B
- 3: C
- 4: D

Practice Final Spring 2016 Answer Section

MULTIPLE CHOICE

1.		B 7.2.1		1 Ch.2.a	DIF:	L2	REF:	p. 192 p. 195
2.	ANS:		PTS:		DIF:	L2	REF:	p. 360 p. 361 p. 362
3.	ANS:	A	PTS:	1	DIF:	L2	REF:	p. 549
4.	ANS:		PTS:		DIF:	L2	REF:	p. 221
5.	ANS:		PTS:	Ch.2.a 1 Ch.5.f	DIF:	L1	REF:	p. 595
6.	ANS:	19.2.1 A 9.4.1	PTS:		DIF:	L2	REF:	p. 272
7.	ANS:		PTS:	1 Ch.3.f	DIF:	L2	REF:	p. 375
8.	ANS:		PTS: STA:	1	DIF:	L1	REF:	p. 587
9.	ANS:		PTS: STA:	1	DIF:	L2	REF:	p. 40
10.	ANS:		PTS:		DIF:	L1	REF:	p. 546 p. 547
11.	ANS:	B 6.3.2	PTS:		DIF:	L3	REF:	p. 162 p. 163 p. 172
12.	ANS:		PTS:		DIF:	L3	REF:	p. 174
13.	ANS:		PTS:		DIF:	L1	REF:	p. 324 p. 325
14.	ANS:		PTS:	1	DIF:	L2	REF:	p. 801
15.		A		1	DIF:	L2	REF:	p. 104
16.	ANS:				DIF:	L3	REF:	p. 257 p. 264
17.	ANS:		PTS:		DIF:	L1	REF:	p. 327
18.	ANS: OBJ:	В	PTS:	1 Ch.1.c Ch.2.a	DIF:		REF:	p. 190
19.	ANS: OBJ:	A	PTS:		DIF:		REF:	p. 232
20.	ANS: OBJ:	C	PTS: STA:	1	DIF:	L2	REF:	p. 269
21.	ANS:		PTS:		DIF:	L2	REF:	p. 471 p. 472
	020.		~ -11.					

22.	ANS:				DIF:	L1	REF:	p. 598
		19.2.2						
23.		D		1	DIF:	L2	REF:	p. 133 p. 134 p. 135
		5.2.1		Ch.1.g				
24.	ANS:		PTS:		DIF:	L2	REF:	p. 554
		18.2.2						
25.	ANS:				DIF:	L3	REF:	p. 111 p. 112 p. 113
		4.3.1 4.3.2						
26.	ANS:		PTS:	1	DIF:	L1	REF:	p. 114
	OBJ:	4.3.3						
27.	ANS:			1	DIF:	L1	REF:	p. 302
	OBJ:	10.2.2						
28.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 269 p. 277
	OBJ:	9.3.2 9.5.3	STA:	Ch.2.b Ch.5				
29.	ANS:	A	PTS:	1	DIF:	L1	REF:	p. 66
	OBJ:	3.1.3						
30.	ANS:	C	PTS:	1	DIF:	L2	REF:	p. 108
	OBJ:	C 4.2.2	STA:	Ch.1.h				
31.	ANS:				DIF:	L2	REF:	p. 106 p. 107
	OBJ:	4.2.1 4.2.2	STA:	Ch.11.a				
32.	ANS:	D	PTS:	1	DIF:	L1	REF:	p. 63
	OBJ:	3.1.1						•
33.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 131
	OBJ:	5.1.3		Ch.1.i				
34.	ANS:	A	PTS:	1	DIF:	L1	REF:	p. 334 p. 335
		11.2.2						
35.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 262
		9.2.1						
36.	ANS:	В	PTS:	1	DIF:	L1	REF:	p. 591
	OBJ:	19.1.2	STA:	Ch.5.e				•
37.	ANS:	В	PTS:		DIF:	L2	REF:	p. 356
		12.1.2	STA:	Ch.3.a				
38.	ANS:		PTS:		DIF:	L2	REF:	p. 157
	OBJ:			Ch.1.a				
39.	ANS:			1	DIF:	L1	REF:	p. 544
		18.1.1		Ch.8.d				
40.	ANS:		PTS:		DIF:	L2	REF:	p. 112
	OBJ:			Ch.11.c				
41.	ANS:		PTS:		DIF:	L1	REF:	p. 188
	OBJ:			Ch.1.c Ch.2.a				
42.	ANS:	В	PTS:	1	DIF:	L1	REF:	p. 39
	OBJ:							1
43.	ANS:		PTS:	1	DIF:	L2	REF:	p. 173
	OBJ:			Ch.1.c				P
44.	ANS:		PTS:		DIF:	L2	REF:	p. 217
	OBJ:			Ch.2.a		_		r
45.	ANS:		PTS:		DIF:	L1	REF:	p. 323
		11.1.2		Ch.3.a	•			1 -
		•						

16	ANS:	D	DTC.	1	DIE.	1.2	DEE.	n 501
40.		D 19.1.2		1 Ch.5.e	DIF:	L2	KEF:	p. 591
47	ANS:				DIE.	Т 1	DEE.	n 42
47.	OBJ:			Ch.2.d	DIF:	LI	REF:	p. 42
10	ANS:				DIE.	Т 1	DEE.	n 77 n 70
46.	OBJ:		PTS:	Ch.4.e	DIF:	LI	KEF:	p. 77 p. 78
40	ANS:		PTS:		DIE.	1.2	DEE.	n 171 n 175
49.	OBJ:			Ch.1.a	DIF:	L3	KEF.	p. 171 p. 175
50	ANS:		PTS:		DIE.	Τ 1	DEE.	n 110 n 112
50.	OBJ:			Ch.11.c	DIF:	LI	KEI.	p. 112 p. 113
51	ANS:				DIF:	Τ 1	DEE.	p. 607
31.		19.3.1			DII.	LI	KLI.	p. 007
52	ANS:		PTS:		DIF:	1.2	DEE:	p. 111
32.		4.3.1 4.3.4			DII.	L2	KLI.	p. 111
53	ANS:				DIF:	12	RFF.	p. 801
55.		25.1.2		Ch.11.d	DII.	L2	KLI.	p. 001
54	ANS:		PTS:		DIF:	T.1	REF:	p. 542
51.		18.1.1			Δп.	Li	REI .	p. 3 12
55.	ANS:				DIF:	L1	REF:	p. 324 p. 325
				Ch.3.a Ch.3.e				p. 02 . p. 020
56.	ANS:		PTS:	•	DIF:	L2	REF:	p. 66
	OBJ:							r
57.	ANS:		PTS:	1	DIF:	L2	REF:	p. 175
	OBJ:			Ch.1.c				r
58.	ANS:		PTS:		DIF:	L2	REF:	p. 480 p. 482
	OBJ:	16.2.1		Ch.6.d				1 11
59.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 360 p. 361 p. 362
	OBJ:	12.2.2	STA:	Ch.3.d				
60.	ANS:	D	PTS:	1	DIF:	L2	REF:	p. 800 p. 804
	OBJ:	25.1.2 25.2.1			STA:	Ch.11.d		
61.	ANS:	C	PTS:	1	DIF:	L1	REF:	p. 550
	OBJ:	18.2.1	STA:	Ch.9.b				
62.	ANS:		PTS:	1	DIF:	L2	REF:	p. 336
	OBJ:	11.2.1	STA:	Ch.3.a Ch.3.e	:			
63.	ANS:		PTS:		DIF:	L2	REF:	p. 481
		16.2.1		Ch.6.d				
64.	ANS:		PTS:	1	DIF:	L2	REF:	p. 111
	OBJ:							
65.	ANS:		PTS:		DIF:	L3	REF:	p. 481 p. 482
		16.2.1		Ch.6.d				
66.	ANS:		PTS:		DIF:	L2	REF:	p. 131
	OBJ:			Ch.1.i				
67.	ANS:		PTS:		DIF:	L1	REF:	p. 587
		19.1.1		Ch.5.a		~ .		221
68.	ANS:		PTS:	1	DIF:	Ll	REF:	p. 254
<i>~</i>	OBJ:		DEC.	1	DIE	T 1	DEE	227
69.	ANS:		PTS:		DIF:	Ll	REF:	p. 327
	OBJ:	11.1.3	SIA:	Ch.3.a Ch.3.e	;			

70.		B 10.1.3		1 Ch.3	DIF:	L2	REF:	p. 294
71.	ANS:	В	PTS:	1	DIF:	L1	REF:	p. 240
72.	ANS:		PTS:		DIF:	L2	REF:	p. 552 p. 553
73.	ANS:		PTS:		DIF:	L1	REF:	p. 594
74.	ANS:		PTS:		DIF:	L3	REF:	p. 106
75.	ANS:	4.2.1 C	STA: PTS:		DIF:	L1	REF:	p. 333
76.	ANS:			1 Ch 5 d	DIF:	L1	REF:	p. 595
77.	ANS:	19.2.1 A 11.2.2	PTS:	Ch.5.d 1	DIF:	L1	REF:	p. 336 p. 337
78.	ANS:	A		1 Ch 11 a	DIF:	L1	REF:	p. 800 p. 802
79.	ANS:	25.1.2 D 6.3.1	PTS:	1	DIF:	L2	REF:	p. 171
80.	ANS:	D 9.3.2 9.5.2	PTS:	1	DIF:	L2	REF:	p. 270 p. 278
81.	ANS:		PTS:	1	DIF:	L2	REF:	p. 110
82.	ANS: OBJ:	В		1	DIF:	L1	REF:	p. 84
83.	ANS: OBJ:	C	PTS:	1	DIF:	L2	REF:	p. 42
84.	ANS:			1 Ch.1.g	DIF:	L2	REF:	p. 188 p. 189
85.	ANS: OBJ:	A 19.1.2	PTS:		DIF:	L2	REF:	p. 592
86.	ANS: OBJ:		PTS: STA:		DIF:	L2	REF:	p. 269
87.	ANS: OBJ:		PTS:	1	DIF:	L2	REF:	p. 112 p. 113
88.	ANS: OBJ:	B 12.2.2	PTS: STA:	1 Ch.3.d	DIF:	L2	REF:	p. 360 p. 361 p. 362
89.	ANS: OBJ:	A 18.2.2	PTS: STA:	1 Ch.8.b	DIF:	L2	REF:	p. 554
90.	ANS: OBJ:		PTS: STA:	1 Ch.2.a	DIF:	L2	REF:	p. 233
		11.1.2		Ch.3.a	DIF:	L1	REF:	p. 323
	ANS: OBJ:	7.1.4		Ch.1.g	DIF:			p. 192
93.	ANS: OBJ:		PTS:	1	DIF:	L2	REF:	p. 115

94.				1	DIF:	L2	REF:	p. 375
95.	ANS:		PTS:	1	DIF:	L1	REF:	p. 546
06		18.1.2 C		Ch.8.c	DIE	L3	DEE:	p. 112 p. 113
70.		4.3.1	STA:	1 Ch.11.c	DII'.	L3	KLI.	p. 112 p. 113
97.	ANS:				DIF:	L1	REF:	p. 800
98.	ANS:			Ch.11.d 1	DIF:	L1	REF:	p. 45
00	OBJ:	2.2.2 D	DTC.	1	DIE	L1	DEE.	p. 594
99.		19.2.1		Ch.5.b	DIF.	LI	KEF.	p. 394
100.				1	DIF:	L1	REF:	p. 112 p. 113
101	OBJ: ANS:	4.3.1	STA: PTS:	Ch.11.c	DIE	L1	DEE.	p. 333
101.		11.2.2	F 13.	1	DII [*] .	LI	KEI.	p. 333
102.	ANS:		PTS:		DIF:	L2	REF:	p. 157
102		6.2.1		Ch.1.a	DIE	L1	REF:	n 191
103.		D 16.2.1		Ch.6.d	DII [*] .	LI	KET.	p. 461
104.		A			DIF:	L1	REF:	p. 217
105	OBJ: ANS:	8.2.1		Ch.2.a	DIE.	1.2	DEE.	n 40
103.	OBJ:		P13:	1	DIF:	L2	REF:	p. 40
106.	ANS:	A	PTS:		DIF:	L2	REF:	p. 172 p. 176
107		6.3.3		Ch.1.c	DIE.	1.2	DEE.	- 900
107.	ANS: OBJ:			Ch.11.d	DIF:	L2	KEF:	p. 800
108.	ANS:	A	PTS:	1	DIF:	L2	REF:	p. 107 p. 108
100		4.2.2		Ch.1.e				7 0.5
109.	ANS:	A 17.1.2	PTS: STA:	I Ch 7 h	DIF:	L1	REF:	p. 506
110.	ANS:		PTS:		DIF:	L1	REF:	p. 271
	OBJ:	9.4.1	STA:	Ch.5.a				•
111.	ANS:		PTS:		DIF:	L1	REF:	p. 240
112	OBJ: ANS:		STA: PTS:	Ch.2.a	DIE	1.2	DEE:	n 115
112.	OBJ:			Ch.1.a	DIF.	L2	KEF.	p. 115
113.	ANS:		PTS:		DIF:	L2	REF:	p. 290 p. 291
		10.1.2		Ch.3.d				-
114.	ANS:		PTS:		DIF:	L3	REF:	p. 803 p. 804
115	OBJ:	25.2.1	STA: PTS:	Ch.11.d	DIF:	Т 1	DEE:	n 802
113.		25.1.2		Ch.11.e	DII'.	LI	KEI.	p. 802
116.	ANS:		PTS:		DIF:	L1	REF:	p. 800
		25.1.2		Ch.11.d				
117.	ANS:		PTS:		DIF:	L2	REF:	p. 800
	ORI:	25.1.2	51A:	Ch.11.e				

118.	ANS: B	PTS:	1	DIF:	L2	REF:	p. 301
	OBJ: 10.2.2		Ch.4.h				
119.	ANS: A		1	DIF:	L2	REF:	p. 262
	OBJ: 9.2.1	STA:					
120.	ANS: C	PTS:	1	DIF:	L1	REF:	p. 66
101	OBJ: 3.1.2	DTC	1	DIE	T 1	DEE	400
121.	ANS: B	PTS:		DIF:	LI	KEF:	p. 480
122	OBJ: 16.2.1 ANS: A	PTS:	Ch.6.d	DIF:	T 1	DEE.	n 15
122.	OBJ: 2.2.2	STA:		DIF.	LI	REF:	p. 43
123	ANS: B	PTS:		DIF:	T.1	RFF.	p. 605
125.	OBJ: 19.3.1		Ch.5.c	υп.	Li	KLI.	p. 003
124.	ANS: B	PTS:		DIF:	L1	REF:	p. 240
	OBJ: 8.1.1 8.4.3			211.			P. = . 0
125.	ANS: A	PTS:		DIF:	L1	REF:	p. 323
	OBJ: 11.1.2		Ch.3.a				
126.	ANS: D	PTS:	1	DIF:	L2	REF:	p. 190
	OBJ: 7.1.1	STA:	Ch.1.g				
127.	ANS: D	PTS:	1	DIF:	L1	REF:	p. 187
	OBJ: 7.1.1	STA:	Ch.1.c Ch.2.a	a Ch.1	.d		
128.	ANS: D		1	DIF:	L2	REF:	p. 261 p. 262 p. 277
	OBJ: 9.2.1 9.5.2						
129.	ANS: D	PTS:		DIF:	L2	REF:	p. 104 p. 105 p. 106
	OBJ: 4.2.1		Ch.1.a				
130.	ANS: C	PTS:		DIF:	L2	REF:	p. 295 p. 296
101	OBJ: 10.1.4	STA:		DIE	1.0	DEE	250 260
131.	ANS: B	PTS:		DIF:	L2	REF:	p. 359 p. 360
122	OBJ: 12.2.1 ANS: B		Ch.3.d	DIE.	1.2	DEE.	m 501
132.	OBJ: 19.1.2	PTS:	Ch.5.b	DIF:	L2	KEF.	p. 591
133	ANS: D	PTS:		DIF:	Т 1	DEE:	p. 110
133.	OBJ: 4.3.1		Ch.1.a	DII.	Li	KLI.	p. 110
134.	ANS: A	PTS:		DIF:	L2	REF:	p. 141
10 11	OBJ: 5.3.2		Ch.1.j	DII.	22	TLLI.	p. 111
135.	ANS: D	PTS:		DIF:	L3	REF:	p. 220 p. 234
	OBJ: 8.2.2		Ch.1.g				
136.	ANS: B	PTS:	1	DIF:	L2	REF:	p. 222
	OBJ: 8.2.1 8.2.4	STA:	Ch.2.a				
137.	ANS: B	PTS:	1	DIF:	L3	REF:	p. 132
	OBJ: 5.1.3	STA:	Ch.1.i				
138.	ANS: B	PTS:		DIF:	L1	REF:	p. 556
	OBJ: 18.2.3		Ch.9.c				
139.	ANS: B	PTS:		DIF:	L2	REF:	p. 217
	OBJ: 8.2.1		Ch.2.a			D	-0 -
140.	ANS: B	PTS:		DIF:	L2	REF:	p. 607
1 / 1	OBJ: 19.3.3		Ch.5.c	DIE	T 1	DEE.	m 507
141.	ANS: B	PTS:		DIF:	LI	KEF:	p. 597
	OBJ: 19.2.2	SIA:	Ch.5.d				

142.	ANS:		PTS:		DIF:	L1	REF:	p. 556
143.	ANS:		PTS:		DIF:	L1	REF:	p. 110
144.	OBJ: ANS:	C	PTS:		DIF:	L2	REF:	p. 134 p. 135
145.	OBJ: ANS:	C	PTS:		DIF:	L2	REF:	p. 480 p. 481
146.	ANS:		PTS:		DIF:	L1	REF:	p. 111
147.	OBJ: ANS:	C	STA: PTS:	Ch.1.a Ch.11 1	.c DIF:	L2	REF:	p. 102
148.	OBJ: ANS:	D	PTS:		DIF:	L2	REF:	p. 363 p. 364 p. 365 p. 366
149.	ANS:		STA: PTS:	Ch.3.d 1	DIF:	L2	REF:	p. 114
150.	OBJ: ANS:	D	PTS:		DIF:	L2	REF:	p. 177
151.	OBJ: ANS:	В	PTS:		DIF:	L2	REF:	p. 360 p. 361 p. 362
152.	ANS:		STA: PTS:	Ch.3.d 1	DIF:	L2	REF:	p. 101
153.	OBJ: ANS:	D	PTS:		DIF:	L2	REF:	p. 305 p. 306
154.	OBJ: ANS:	C	STA: PTS:	1	DIF:	L2	REF:	p. 554
155.	ANS:		PTS:		DIF:	L2	REF:	p. 360 p. 361 p. 362
156.	ANS:		PTS:		DIF:	L2	REF:	p. 177
157.	OBJ: ANS:	A	PTS:		DIF:	L2	REF:	p. 221
158.	OBJ: ANS:	A	PTS:		DIF:	L2	REF:	p. 801
159.	ANS:		STA: PTS:	Ch.11.d 1	DIF:		REF:	p. 356
160.	ANS:		PTS:		STA: DIF:	Ch.3.d L2	REF:	p. 111
161.	OBJ: ANS:	В	PTS:		DIF:	L1	REF:	p. 507
162.	ANS:		PTS:		DIF:	L2	REF:	p. 302
163.	ANS:		STA: PTS:	Ch.4.h 1	DIF:	L1	REF:	p. 330 p. 337
164.	ANS:		PTS:		DIF:	L1	REF:	p. 254
165.	OBJ: ANS:	A	STA: PTS:	1	DIF:	L1	REF:	p. 363 p. 364 p. 365 p. 366
	OBJ:	12.2.2	STA:	Ch.3.d				

166.		A 12.1.2			DIF:	L2	REF:	p. 356
167.	ANS:	D			DIF:	L2	REF:	p. 116
168.	OBJ: ANS:	В			DIF:	L2	REF:	p. 307
169.	ANS:		STA: PTS:	1	DIF:	L3	REF:	p. 111
170.	ANS:		PTS:		DIF:	L1	REF:	p. 110
171.	OBJ: ANS:			Ch.1.a	DIF:	L1	REF:	p. 40
172.	OBJ: ANS:	A	PTS:	1	DIF:	L1	REF:	p. 546
173.	OBJ: ANS:	18.1.2 B	STA: PTS:	Ch.8.c	DIF:	L2	REF:	p. 360 p. 361 p. 362
174.	ANS:	12.2.2 C	PTS:	Ch.3.d 1	DIF:	L2	REF:	p. 324 p. 325
175.	OBJ: ANS:	11.1.3	STA:	Ch.3.a Ch.3.6	DIF:	L3		p. 800 p. 804
		25.1.2 25.2.1			STA:	Ch.11.d		p. 597 p. 598
		19.2.2		Ch.5.d	DIF:			p. 552 p. 553
		18.2.2		Ch.9.a	DIF:		REF:	
	OBJ:	2.1.3			DIF:			•
	OBJ:	17.1.1	STA:	Ch.7.a				p. 506
		25.1.2	STA:	Ch.11.d	DIF:			p. 801
	ANS: OBJ:	3.4.2			DIF:		REF:	•
		17.1.3	PTS: STA:	1 Ch.7.d	DIF:	L1	REF:	p. 507
183.	ANS: St. 7d	D						
101	PTS:		D		D. I.			
184.	OBJ:	17.3.2		Ch.7.e	DIF:			p. 525
		17.1.1	PTS: STA:	Ch.7	DIF:			p. 506
186.		C 17.1.3		1 Ch.7.d	DIF:	L1	REF:	p. 508
	ANS: ANS: OBJ:		PTS: PTS: STA:		DIF:	L1	REF:	p. 509 p. 510

189.		D			DIF:	L1	REF:	p. 505
		17.1.1		Ch.7				
190.	ANS:			1		L2	REF:	p. 531
		17.4.2		Ch.7.d Ch.7.d	e			
	ANS:		PTS:	1				
192.	ANS:	E	PTS:	1				
193.	ANS:	В	PTS:	1				
194.	ANS:	A	PTS:	1	DIF:	Medium	REF:	Section: 7.8
	OBJ:	EK.1.B.2						
195.	ANS:	A	PTS:	1	DIF:	Medium	REF:	Section: 7.9
	OBJ:	EK.1.B.2						
196.	ANS:	A	PTS:	1				
197.	ANS:	D	PTS:	1				
198.	ANS:	C	PTS:	1	DIF:	L2	REF:	p. 139
	OBJ:	5.3.1	STA:	Ch.1.j				
199.	ANS:	A	PTS:	1	DIF:	L2	REF:	p. 143
	OBJ:	5.3.3	STA:	Ch.1.j				
200.	ANS:	A	PTS:	1	DIF:	L2	REF:	p. 139
	OBJ:	5.3.1	STA:	Ch.1.j				
201.	ANS:	D	PTS:	1				
202.	ANS:	A	PTS:	1				
203.	ANS:	C	PTS:	1	DIF:	Easy	REF:	Section: 14.1
	OBJ:	EK.6.A.3				-		
204.	ANS:	В	PTS:	1				
205.	ANS:	В						
	5a							
	PTS:	1						
206.	ANS:	A						
	8b							
	PTS:	1						

MULTIPLE RESPONSE

207.	ANS:	B, C	PTS:	1
208.	ANS:	B, C, E	PTS:	1
209.	ANS:	A, D	PTS:	1
210.	ANS:	A, D		
	2f			
	PTS:	1		
211.	ANS:	A, B, C	PTS:	1
212.	ANS:	A, D	PTS:	1

PROBLEM

213. ANS: B

PTS: 1

214. ANS: B

ט

PTS: 1