\qquad
\qquad
\qquad

Practice Final Spring 2016

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What is the name of the ionic compound formed from lithium and bromine?
a. lithium bromine
c. lithium bromium
b. lithium bromide
d. lithium bromate
\qquad 2. Mercury can be obtained by reacting mercury(II) sulfide with calcium oxide. How many grams of calcium oxide are needed to produce 36.0 g of Hg ?
$4 \mathrm{HgS}(s)+4 \mathrm{CaO}(s) \rightarrow 4 \mathrm{Hg}(l)+3 \mathrm{CaS}(s)+\mathrm{CaSO}_{4}$
a. $\quad 1.80 \mathrm{~g}$
b. 7.56 g
c. $\quad 10.1 \mathrm{~g}$
d. $\quad 13.4 \mathrm{~g}$
\qquad 3. If sulfur dioxide and oxygen can be made into sulfur trioxide, what is the reverse reaction?
a. $2 \mathrm{SO}_{3} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
b. $\quad \mathrm{SO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{5}$
c. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
d. $\mathrm{SO}_{2}+2 \mathrm{SO}_{3} \rightarrow 3 \mathrm{~S}+4 \mathrm{O}_{2}$
2. Which of the following elements can form diatomic molecules held together by triple covalent bonds?
a. carbon
c. fluorine
b. oxygen
d. nitrogen
3. If the hydrogen ion concentration of a solution is $10^{-10} \mathrm{M}$, is the solution acidic, alkaline, or neutral?
a. acidic
c. neutral
b. alkaline
d. The answer cannot be determined.
\qquad 6. When the name of an anion that is part of an acid ends in -ite, the acid name includes the suffix \qquad .
a. -ous
c. -ate
b. -ic
d. -ite
\qquad 7. In a particular reaction between copper metal and silver nitrate, 12.7 g Cu produced 38.1 g Ag . What is the percent yield of silver in this reaction?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
a. 56.7%
b. 77.3%
c. 88.2%
d. 176%
\qquad 8. When an acid reacts with a base, what compounds are formed?
a. a salt only
c. metal oxides only
b. water only
d. a salt and water
4. Which of the following CANNOT be classified as a substance?
a. table salt
c. nitrogen
b. air
d. gold
5. Why does a catalyst cause a reaction to proceed faster?
a. There are more collisions per second only.
b. The collisions occur with greater energy only.
c. The activation energy is lowered only.
d. There are more collisions per second and the collisions are of greater energy.
6. In which of the following groups of ions are the charges all shown correctly?
a. $\mathrm{Li}^{-}, \mathrm{O}^{2-}, \mathrm{S}^{2+}$
b. $\mathrm{Ca}^{2+}, \mathrm{Al}^{3+}, \mathrm{Br}^{-}$
c. $\mathrm{K}^{2-}, \mathrm{F}^{-}, \mathrm{Mg}^{2+}$
d. $\mathrm{Na}^{+}, \mathrm{I}^{-}, \mathrm{Rb}^{-}$
7. Which of the following factors contributes to the increase in ionization energy from left to right across a period?
a. an increase in the shielding effect
b. an increase in the size of the nucleus
c. an increase in the number of protons
d. fewer electrons in the highest occupied energy level
8. If you rewrite the following word equation as a balanced chemical equation, what will the coefficient and symbol for fluorine be?
nitrogen trifluoride \rightarrow nitrogen + fluorine
a. $6 \mathrm{~F}_{2}$
b. F_{3}
c. 6 F
d. $3 F_{2}$
9. What symbol is used for beta radiation?
a. ${ }_{0}^{0} \mathrm{e}$
b. ${ }_{-1}^{0} \mathrm{e}$
c. $\quad{ }_{0}^{-1} \mathrm{e}$
d. ${ }_{-1}^{-1} \mathrm{e}$
10. Which of the following was originally a tenet of Dalton's atomic theory, but had to be revised about a century ago?
a. Atoms are tiny indivisible particles.
b. Atoms of the same element are identical.
c. Compounds are made by combining atoms.
d. Atoms of different elements can combine with one another in simple whole number ratios.
11. What is the correct formula for calcium dihydrogen phosphate?
a. $\mathrm{CaH}_{2} \mathrm{PO}_{4}$
b. $\mathrm{Ca}_{2} \mathrm{H}_{2} \mathrm{PO}_{4}$
c. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
d. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{HPO}_{4}\right)_{2}$
12. When the following equation is balanced, what is the coefficient for HCl ?
$\mathrm{Mg}(s)+\mathrm{HCl}(a q) \rightarrow \operatorname{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$
a. 6
b. 3
c. 1
d. 2
13. How many electrons does barium have to give up to achieve a noble-gas electron configuration?
a. 1
b. 2
c. 3
d. 4
14. The shape of the methane molecule $\left(\mathrm{CH}_{4}\right)$ is called \qquad .
a. tetrahedral
c. four-cornered
b. square
d. planar
15. Which of the following formulas represents a molecular compound?
a. ZnO
c. SO_{2}
b. Xe
d. BeF_{2}
16. Which of the following usually makes a substance dissolve faster in a solvent?
a. agitating the solution
b. increasing the particle size of the solute
c. lowering the temperature
d. decreasing the number of particles
17. What is the best description for a solution with a hydroxide-ion concentration of $1 \times 10^{-4} \mathrm{M}$?
a. acidic
c. neutral
b. basic
d. The answer cannot be determined.
18. What is the electron configuration of potassium?
a. $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{2} 4 s^{1}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{10} 3 s^{2} 3 p^{3}$
c. $\quad 1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 3 d^{1}$
d. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
19. In an endothermic reaction at equilibrium, what is the effect of raising the temperature?
a. The reaction makes more products.
c. The reaction is unchanged.
b. The reaction makes more reactants.
d. The answer cannot be determined.
20. How do the isotopes hydrogen-1 and hydrogen-2 differ?
a. Hydrogen-2 has one more electron than hydrogen-1.
b. Hydrogen-2 has one neutron; hydrogen-1 has none.
c. Hydrogen-2 has two protons; hydrogen-1 has one.
d. Hydrogen-2 has one proton; hydrogen-1 has none.
21. Which of the following equals one atomic mass unit?
a. the mass of one electron
b. the mass of one helium-4 atom
c. the mass of one carbon- 12 atom
d. one-twelfth the mass of one carbon-12 atom
22. The molar mass of a gas can be determined from which of the following?
a. the density of the gas at STP
c. Avogadro's number
b. the volume of a mole of the gas
d. none of the above
23. Which of the following is the correct name for $\mathrm{N}_{2} \mathrm{O}_{5}$?
a. nitrous oxide
c. nitrogen dioxide
b. dinitrogen pentoxide
d. nitrate oxide
24. How many significant figures are in the measurement 0.0034 kg ?
a. two
c. five
b. four
d. This cannot be determined.
25. As a consequence of the discovery of the nucleus by Rutherford, which model of the atom is thought to be true?
a. Protons, electrons, and neutrons are evenly distributed throughout the volume of the atom.
b. The nucleus is made of protons, electrons, and neutrons.
c. Electrons are distributed around the nucleus and occupy almost all the volume of the atom.
d. The nucleus is made of electrons and protons.
26. The particles that are found in the nucleus of an atom are \qquad .
a. neutrons and electrons
c. protons and neutrons
b. electrons only
d. protons and electrons
27. The diameter of a carbon atom is 0.000000000154 m . What is this number expressed in scientific notation?
a. $\quad 1.54 \times 10^{12} \mathrm{~m}$
b. $\quad 1.54 \times 10^{-12} \mathrm{~m}$
c. $\quad 1.54 \times 10^{10} \mathrm{~m}$
d. $\quad 1.54 \times 10^{-10} \mathrm{~m}$
28. How many energy sublevels are in the second principal energy level?
a. 1
b. 2
c. 3
d. 4
29. The equation $\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \mathrm{K}_{3} \mathrm{PO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ is an example of which type of reaction?
a. neutralization reaction
c. decomposition reaction
b. combination reaction
d. single-replacement reaction
30. Which of the following formulas represents an ionic compound?
a. CS_{2}
b. BaI_{2}
c. $\mathrm{N}_{2} \mathrm{O}_{4}$
d. PCl_{3}
31. What is transferred between a conjugate acid-base pair?
a. an electron
c. a hydroxide ion
b. a proton
d. a hydronium ion
32. Which of the following is an INCORRECT interpretation of the balanced equation shown below? $2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. 2 atoms $\mathrm{S}+3$ molecules $\mathrm{O}_{2} \rightarrow 2$ molecules SO_{3}
b. $2 \mathrm{~g} \mathrm{~S}+3 \mathrm{~g} \mathrm{O}_{2} \rightarrow 2 \mathrm{~g} \mathrm{SO}_{3}$
c. $2 \mathrm{~mol} \mathrm{~S}+3 \mathrm{~mol} \mathrm{O}_{2} \rightarrow 2 \mathrm{~mol} \mathrm{SO}_{3}$
d. none of the above
33. Each period in the periodic table corresponds to \qquad .
a. a principal energy level
c. an orbital
b. an energy sublevel
d. a suborbital
34. Another name for the activated complex is \qquad .
a. energy barrier
c. rate limiter
b. transition state
d. collision group
35. If E is the symbol for an element, which two of the following symbols represent isotopes of the same element?
36. ${ }_{10}^{20} \mathrm{E}$
37. ${ }_{11}^{20} \mathrm{E}$
38. ${ }_{9}^{21} \mathrm{E}$
39. ${ }_{10}^{21} \mathrm{E}$
a. $\quad 1$ and 2
b. 3 and 4
c. $\quad 1$ and 4
d. 2 and 3
40. How many valence electrons are in a silicon atom?
a. 2
b. 4
c. 6
d. 8
41. Which of the following is NOT an example of matter?
a. air
c. smoke
b. heat
d. water vapor
42. Which of the following elements has the smallest first ionization energy?
a. sodium
c. potassium
b. calcium
d. magnesium
43. How do atoms achieve noble-gas electron configurations in single covalent bonds?
a. One atom completely loses two electrons to the other atom in the bond.
b. Two atoms share two pairs of electrons.
c. Two atoms share two electrons.
d. Two atoms share one electron.
44. Symbols used in equations, together with the explanations of the symbols, are shown below. Which set is correct?
a. (g), grams
c. (aq), dissolved in water
b. (l), liters
d. (s), solid product
45. Which of the following represents a Brønsted-Lowry conjugate acid-base pair?
a. $\mathrm{SO}_{3}{ }^{2-}$ and SO_{2}
b. $\mathrm{CO}_{3}{ }^{2-}$ and CO
c. $\mathrm{H}_{3} \mathrm{O}$ and H_{2}
d. $\quad \mathrm{NH}_{4}{ }^{+}$and NH_{3}
46. Which state of matter takes both the shape and volume of its container?
a. solid
c. gas
b. liquid
d. both b and c
47. If the temperature changes by 100 K , by how much does it change in ${ }^{\circ} \mathrm{C}$?
a. $\quad 0^{\circ} \mathrm{C}$
b. $\quad 37^{\circ} \mathrm{C}$
c. $100^{\circ} \mathrm{C}$
d. $\quad 273^{\circ} \mathrm{C}$
48. Which of the following elements has the smallest atomic radius?
a. sulfur
c. selenium
b. chlorine
d. bromine
49. Isotopes of the same element have different \qquad
a. positions on the periodic table
c. atomic numbers
b. chemical behavior
d. mass numbers
50. The acid dissociation constant for an acid dissolved in water is equal to the \qquad .
a. equilibrium constant
b. equilibrium constant times the concentration of water
c. equilibrium constant divided by the concentration of water
d. equilibrium constant times the equilibrium constant of water
51. Using the periodic table, determine the number of neutrons in ${ }^{16} \mathrm{O}$.
a. 4
b. 8
c. $\quad 16$
d. 24
52. What particle decomposes to produce the electron of beta radiation?
a. proton
c. electron
b. neutron
d. positron
53. Which expression represents a reaction rate?
a. time/mass
c. energy/time
b. number/time
d. time/energy
54. What are the coefficients that will balance the skeleton equation below?
$\mathrm{AlCl}_{3}+\mathrm{NaOH} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaCl}$
a. $1,3,1,3$
b. $3,1,3,1$
c. $1,1,1,3$
d. $1,3,3,1$
55. Which of the following measurements is expressed to three significant figures?
a. $\quad 0.007 \mathrm{~m}$
b. $\quad 7077 \mathrm{mg}$
c. $\quad 7.30 \times 10^{-7} \mathrm{~km}$
d. $\quad 0.070 \mathrm{~mm}$
56. Which of the following elements has the smallest ionic radius?
a. Li
c. O
b. K
d. S
\qquad 58. What is the number of moles of solute in 250 mL of a 0.4 M solution?
a. $\quad 0.1 \mathrm{~mol}$
b. $\quad 0.16 \mathrm{~mol}$
c. $\quad 0.62 \mathrm{~mol}$
d. $\quad 1.6 \mathrm{~mol}$
57. How many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are produced when 71.0 g $\mathrm{P}_{4} \mathrm{O}_{10}$ reacts completely to form $\mathrm{H}_{3} \mathrm{PO}_{4}$?

$$
\mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(a q)
$$

a. $\quad 0.0635 \mathrm{~mol}$
b. $\quad 1.00 \mathrm{~mol}$
c. $\quad 4.00 \mathrm{~mol}$
d. $\quad 16.0 \mathrm{~mol}$
60. When radium-226 (atomic number 88) decays by emitting an alpha particle, it becomes \qquad _.
a. polonium-222
c. radium-222
b. polonium-224
d. radon-222
61. At equilibrium, what is the rate of production of reactants compared with the rate of production of products?
a. much higher
c. the same
b. higher
d. lower

6
62. Which of the following is the correctly balanced equation for the incomplete combustion of heptene, $\mathrm{C}_{7} \mathrm{H}_{14}$?
a. $\mathrm{C}_{7} \mathrm{H}_{14}+14 \mathrm{O} \rightarrow 7 \mathrm{CO}+7 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{C}_{7} \mathrm{H}_{14}+7 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}+7 \mathrm{H}_{2} \mathrm{O}$
c. $2 \mathrm{C}_{7} \mathrm{H}_{14}+21 \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{7} \mathrm{O}_{2}+7 \mathrm{H}_{2}$
63. What is the molarity of 200 mL of solution in which 2.0 moles of sodium bromide is dissolved?
a. $2.0 M$
b. 10 M
c. 0.40 M
d. $\quad 4.0 \mathrm{M}$
64. How is the number of neutrons in the nucleus of an atom calculated?
a. Add the number of electrons and protons together.
b. Subtract the number of electrons from the number of protons.
c. Subtract the number of protons from the mass number.
d. Add the mass number to the number of electrons.
65. What mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is needed to make 2.5 L of 2.0 M solution? $(\mathrm{Na}=23 \mathrm{~g} ; \mathrm{S}=32 \mathrm{~g} ; \mathrm{O}=16 \mathrm{~g})$
a. $\quad 178 \mathrm{~g}$
b. 284 g
c. $\quad 356 \mathrm{~g}$
d. 710 g
66. What types of atomic orbitals are in the third principal energy level?
a. $\quad s$ and p only
b. $\quad p$ and d only
c. s, p, and d only
d. $\quad s, p, d$, and f
67. Which of the following is a property of an acid?
a. sour taste
c. strong color
b. nonelectrolyte
d. unreactive
68. What type of ions have names ending in -ide?
a. only cations
c. only metal ions
b. only anions
d. only gaseous ions
69. When the equation $\mathrm{KClO}_{3}(s) \rightarrow \mathrm{KCl}(s)+\mathrm{O}_{2}(g)$ is balanced, the coefficient of KClO_{3} is \qquad .
a. 1
b. 2
c. 3
d. 4
70. What is true about the molar mass of chlorine gas?
a. The molar mass is 35.5 g .
b. The molar mass is 71.0 g .
c. The molar mass is equal to the mass of one mole of chlorine atoms.
d. none of the above
71. Which of the forces of molecular attraction is the weakest?
a. dipole interaction
c. hydrogen bond
b. dispersion
d. single covalent bond
72. What is the effect of adding more water to the following equilibrium reaction? $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
a. More $\mathrm{H}_{2} \mathrm{CO}_{3}$ is produced.
b. CO_{2} concentration increases.
c. The equilibrium is pushed in the direction of reactants.
d. There is no effect.
73. The products of self-ionization of water are \qquad .
a. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
b. OH^{-}and OH^{+}
c. OH^{+}and H^{-}
d. OH^{-}and H^{+}
74. All atoms are \qquad .
a. positively charged, with the number of protons exceeding the number of electrons
b. negatively charged, with the number of electrons exceeding the number of protons
c. neutral, with the number of protons equaling the number of electrons
d. neutral, with the number of protons equaling the number of electrons, which is equal to the number of neutrons
75. The type of reaction that takes place when one element reacts with a compound to form a new compound and a different element is a \qquad _.
a. combination reaction
c. single-replacement reaction
b. decomposition reaction
d. double-replacement reaction
76. In a neutral solution, the $\left[\mathrm{H}^{+}\right]$is \qquad .
a. $\quad 10^{-14} \mathrm{M}$
c. $\quad 1 \times 10^{7} \mathrm{M}$
b. zero
d. equal to $\left[\mathrm{OH}^{-}\right]$
\qquad 77. The equation $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ is an example of which type of reaction?
a. combustion reaction
c. double-replacement reaction
b. single-replacement reaction
d. decomposition reaction
78. Which is the most susceptible to damage from ionizing radiation?
a. soft tissue
c. wood
b. paper
d. lead
79. Atomic size generally \qquad -
a. increases as you move from left to right across a period
b. decreases as you move from top to bottom within a group
c. remains constant within a period
d. decreases as you move from left to right across a period
80. Select the correct formula for sulfur hexafluoride.
a. $\mathrm{S}_{2} \mathrm{~F}_{6}$
b. $\quad \mathrm{F}_{6} \mathrm{SO}_{3}$
c. $F_{6} S_{2}$
d. $\quad \mathrm{SF}_{6}$
81. In which of the following sets is the symbol of the element, the number of protons, and the number of electrons given correctly?
a. In, 49 protons, 49 electrons
c. Cs, 55 protons, 132.9 electrons
b. $\mathrm{Zn}, 30$ protons, 60 electrons
d. F, 19 protons, 19 electrons
82. What is the quantity 0.0075 meters expressed in centimeters?
a. $\quad 0.075 \mathrm{~cm}$
b. $\quad 0.75 \mathrm{~cm}$
c. $\quad 7.5 \mathrm{~cm}$
d. 70.5 cm
83. Which of the following is a physical change?
a. corrosion
c. evaporation
b. explosion
d. rotting of food
84. What is the electron configuration of the calcium ion?
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} 4 s^{2}$
c. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 4 s^{1}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
\qquad 85. Which of the following reactions illustrates amphoterism?
a. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
b. $\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$
c. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
d. $\mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$
\qquad 86. Which of the following correctly shows a prefix used in naming binary molecular compounds with its corresponding number?
a. deca-, 7
c. hexa-, 8
b. nona-, 9
d. octa-, 4
87. In which of the following is the number of neutrons correctly represented?
a. $\quad{ }_{9}^{19} \mathrm{~F}$ has 0 neutrons.
b. ${ }_{33}^{75}$ As has 108 neutrons.
c. ${ }_{12}^{24} \mathrm{Mg}$ has 24 neutrons.
d. ${ }_{92}^{238} \mathrm{U}$ has 146 neutrons.
88. Iron(III) oxide is formed when iron combines with oxygen in the air. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are formed when 16.7 g of Fe reacts completely with oxygen?
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
a. $\quad 12.0 \mathrm{~g}$
b. 23.9 g
c. 47.8 g
d. $\quad 95.6 \mathrm{~g}$
89. Consider the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. What is the effect of decreasing the volume on the contained gases?
a. The reaction shifts toward the product gas.
b. The system reacts by increasing the number of gas molecules.
c. The pressure on the gases decreases momentarily.
d. Ammonia is consumed in the reaction.
90. What causes water molecules to have a bent shape, according to VSEPR theory?
a. repulsive forces between unshared pairs of electrons
b. interaction between the fixed orbitals of the unshared pairs of oxygen
c. ionic attraction and repulsion
d. the unusual location of the free electrons
91. This symbol (\rightleftharpoons) indicates that \qquad .
a. heat must be applied
b. an incomplete combustion reaction has occurred
c. a gas is formed by the reaction
d. the reaction is reversible
92. What is the electron configuration of the iodide ion?
a. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6}$
93. The atomic mass of an element depends upon the \qquad .
a. mass of each electron in that element
b. mass of each isotope of that element
c. relative abundance of protons in that element
d. mass and relative abundance of each isotope of that element
94. Lead nitrate can be decomposed by heating. What is the percent yield of the decomposition reaction if 9.9 g $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are heated to give 5.5 g of PbO ?
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(s) \rightarrow 2 \mathrm{PbO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
a. 44%
b. 56%
c. 67%
d. 82%
95. What happens to a catalyst in a reaction?
a. It is unchanged.
c. It is incorporated into the reactants.
b. It is incorporated into the products.
d. It evaporates away.
96. Which of the following sets of symbols represents isotopes of the same element?
a. $\quad{ }_{42}^{91} \mathrm{~J} \quad{ }_{42}^{92}{ }_{40}^{93} \mathrm{~J}$
b. $\quad{ }_{19}^{50} \mathrm{~L} \quad{ }_{20}^{50} \mathrm{~L} \quad{ }_{21}^{50} \mathrm{~L}$
c. $\quad{ }_{38}^{84} \mathrm{M}{ }_{38}^{86} \mathrm{M}{ }_{38}^{87} \mathrm{M}$
d. $\quad{ }_{59}^{138} \mathrm{Q}{ }_{55}^{133} \mathrm{Q}{ }_{54}^{133} \mathrm{Q}$
97. The charge on a gamma ray is \qquad .
a. +2
b. +1
c. 0
d. -2
98. Which of the following is a heterogeneous mixture?
a. air
c. steel
b. salt water
d. soil
\qquad 99. What is the charge on the hydronium ion?
a. 2-
c. 0
b. 2-
d. $1+$
\qquad 100. Isotopes of the same element have different \qquad
a. numbers of neutrons
c. numbers of electrons
b. numbers of protons
d. atomic numbers
\qquad 101. The equation $\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$ is an example of which type of reaction?
a. combination reaction
c. decomposition reaction
b. single-replacement reaction
d. double-replacement reaction
\qquad 102. The atomic number of an element is the total number of which particles in the nucleus?
a. neutrons
c. electrons
b. protons
d. protons and electrons
\qquad 103. What is the molarity of a solution that contains 6 moles of solute in 2 liters of solution?
a. $6 M$
b. $12 M$
c. 7 M
d. $3 M$
\qquad 104. Which of these elements does not exist as a diatomic molecule?
a. Ne
c. H
b. F
d. I
\qquad 105. Which of the following are considered physical properties of a substance?
a. color and odor
c. malleability and hardness
b. melting and boiling points
d. all of the above
\qquad 106. Which of the following statements correctly compares the relative size of an ion to its neutral atom?
a. The radius of an anion is greater than the radius of its neutral atom.
b. The radius of an anion is identical to the radius of its neutral atom.
c. The radius of a cation is greater than the radius of its neutral atom.
d. The radius of a cation is identical to the radius of its neutral atom.
\qquad 107. Which symbol is used for an alpha particle?
a. ${ }_{1}^{2} \mathrm{He}$
b. ${ }_{2}^{2} \mathrm{He}$
c. ${ }_{1}^{4} \mathrm{He}$
d. ${ }_{2}^{4} \mathrm{He}$
\qquad 108. The nucleus of an atom is \qquad .
a. the central core and is composed of protons and neutrons
b. positively charged and has more protons than neutrons
c. negatively charged and has a high density
d. negatively charged and has a low density
\qquad 109. A process that absorbs heat is $\mathrm{a}(\mathrm{n})$ \qquad —.
a. endothermic process
c. exothermic process
b. polythermic process
d. ectothermic process
110. When dissolved in water, acids produce \qquad _.
a. negative ions
c. hydrogen ions
b. polyatomic ions
d. oxide ions
\qquad 111. What is thought to cause the dispersion forces?
a. attraction between ions
c. sharing of electron pairs
b. motion of electrons
d. differences in electronegativity
112. The atomic mass of an element is the \qquad .
a. total number of subatomic particles in its nucleus
b. weighted average of the masses of the isotopes of the element
c. total mass of the isotopes of the element
d. average of the mass number and the atomic number for the element
113. How many moles of tungsten atoms are in 4.8×10^{25} atoms of tungsten?
a. $\quad 8.0 \times 10^{2}$ moles
b. 8.0×10^{1} moles
c. $\quad 1.3 \times 10^{-1}$ moles
d. 1.3×10^{-2} moles
114. What particle is needed to complete the following nuclear equation? ${ }_{25}^{56} \mathrm{Mn} \rightarrow \ldots+{ }_{-1}^{0} \mathrm{e}$
a. $\quad{ }_{27}^{56} \mathrm{Co}$
b. ${ }_{25}^{27} \mathrm{Mn}$
c. ${ }_{26}^{56} \mathrm{Fe}$
d. ${ }_{24}^{58} \mathrm{Cr}$
\qquad 115. The least penetrating form of radiation is \qquad .
a. beta radiation
c. alpha radiation
b. gamma radiation
d. X rays
\qquad 116. What particle is emitted in alpha radiation?
a. electron
c. helium nucleus
b. photon
d. hydrogen nucleus
\qquad 117. Which of the following materials is necessary to stop an alpha particle?
a. three feet of concrete
c. single sheet of aluminum foil
b. three inches of lead
d. single sheet of paper
\qquad 118. What is the volume, in liters, of 0.500 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ gas at STP?
a. $\quad 0.0335 \mathrm{~L}$
b. $\quad 11.2 \mathrm{~L}$
c. $\quad 16.8 \mathrm{~L}$
d. $\quad 22.4 \mathrm{~L}$
\qquad 119. Which of the following correctly represents an ion pair and the ionic compound the ions form?
a. $\mathrm{Ca}^{2-}, \mathrm{F}^{-} ; \mathrm{CaF}_{2}$
b. $\mathrm{Na}^{+}, \mathrm{Cl}^{-} ; \mathrm{NaCl}_{2}$
c. $\mathrm{Ba}^{2+}, \mathrm{O}^{2-} ; \mathrm{Ba}_{2} \mathrm{O}_{2}$
d. $\mathrm{Pb}^{4+}, \mathrm{O}^{2-} ; \mathrm{Pb}_{2} \mathrm{O}_{4}$
\qquad 120. Which of the following measurements contains two significant figures?
a. $\quad 0.00400 \mathrm{~L}$
b. $\quad 0.00404 \mathrm{~L}$
c. $\quad 0.00044 \mathrm{~L}$
d. $\quad 0.00440 \mathrm{~L}$
\qquad 121. In a concentrated solution there is \qquad -.
a. no solvent
c. a small amount of solute
b. a large amount of solute
d. no solute
\qquad 122. Which of the following is true about homogeneous mixtures?
a. They are known as solutions.
b. They consist of two or more phases.
c. They have compositions that never vary.
d. They are always liquids.
\qquad 123. What characterizes a strong acid or base?
a. polar covalent bonding
b. complete ionization in water
c. ionic bonding
d. presence of a hydroxide or hydrogen ion
124. What causes dipole interactions?
a. sharing of electron pairs
b. attraction between polar molecules
c. bonding of a covalently bonded hydrogen to an unshared electron pair
d. attraction between ions
\qquad 125. What does the symbol Δ in a chemical equation mean?
a. Heat is supplied to the reaction.
c. yields
b. A catalyst is needed.
d. precipitate
\qquad 126. What is the electron configuration of the gallium ion?
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 4 s^{1}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 p^{6}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$
\qquad 127. How many valence electrons are in an atom of phosphorus?
a. 2
b. 3
c. 4
d. 5
\qquad 128. What is the correct name for the compound CoCl_{2} ?
a. cobalt(I) chlorate
c. cobalt(II) chlorate
b. cobalt(I) chloride
d. cobalt(II) chloride
\qquad 129. Which of the following is true about subatomic particles?
a. Electrons are negatively charged and are the heaviest subatomic particle.
b. Protons are positively charged and the lightest subatomic particle.
c. Neutrons have no charge and are the lightest subatomic particle.
d. The mass of a neutron nearly equals the mass of a proton.
\qquad 130. What is the molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$?
a. 144 g
b. 138 g
c. 96 g
d. 78 g
\qquad 131. When iron rusts in air, iron(III) oxide is produced. How many moles of oxygen react with 2.4 mol of iron in the rusting reaction?

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe} 2 \mathrm{O}_{3}(\mathrm{~s})
$$

a. $\quad 1.2 \mathrm{~mol}$
b. $\quad 1.8 \mathrm{~mol}$
c. $\quad 2.4 \mathrm{~mol}$
d. 3.2 mol
\qquad 132. What are the acids in the following equilibrium reaction?
$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$
a. $\mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCN}$
c. $\mathrm{CN}^{-}, \mathrm{OH}^{-}$
d. $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
\qquad 133. An element has an atomic number of 76 . The number of protons and electrons in a neutral atom of the element are \qquad _.
a. $\quad 152$ protons and 76 electrons
b. 76 protons and 0 electrons
c. 38 protons and 38 electrons
d. 76 protons and 76 electrons
\qquad 134. Emission of light from an atom occurs when an electron \qquad .
a. drops from a higher to a lower energy level
b. jumps from a lower to a higher energy level
c. moves within its atomic orbital
d. falls into the nucleus
\qquad 135. Which of the following electron configurations gives the correct arrangement of the four valence electrons of the carbon atom in the molecule methane $\left(\mathrm{CH}_{4}\right)$?
a. $2 s^{2} 2 p^{2}$
b. $2 s^{1} 2 p^{1} 3 s^{1}$
c. $2 s^{1} 2 p^{2} 3 s^{1}$
d. $2 s^{1} 2 p^{3}$
\qquad 136. A molecule with a single covalent bond is \qquad .
a. CO_{2}
b. Cl_{2}
c. CO
d. N_{2}
\qquad 137. What is the maximum number of electrons in the second principal energy level?
a. 2
b. 8
c. 18
d. 32
\qquad 138. What is the equilibrium constant for the following reaction?
$\mathrm{C}+\mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}$
a. $\frac{[\mathrm{C}]\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]}$
b. $\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{C}]\left[\mathrm{O}_{2}\right]}$
c. $\frac{[\mathrm{C}]^{2}\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{CO}_{2}\right]^{2}}$
d. $\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{C}]^{2}\left[\mathrm{O}_{2}\right]^{2}}$
\qquad 139. Why do atoms share electrons in covalent bonds?
a. to become ions and attract each other
b. to attain a noble-gas electron configuration
c. to become more polar
d. to increase their atomic numbers
\qquad 140. A substance with a K_{a} of 1×10^{-5} would favor which side of a reaction?
a. products
b. reactants
___ 141. Which type of solution is one with a pH of 8 ?
a. acidic
b. basic
c. neutral
d. The type varies, depending on the solution.
\qquad 142. The $K_{\text {eq }}$ of a reaction is 4×10^{-7}. At equilibrium, the \qquad .
a. reactants are favored
b. products are favored
c. reactants and products are present in equal amounts
d. rate of the forward reaction is much greater than the rate of the reverse reaction
\qquad 143. The atomic number of an element is the total number of which particles in the nucleus?
a. neutrons
c. electrons
b. protons
d. protons and electrons
\qquad 144. What is the number of electrons in the outermost energy level of an oxygen atom?
a. 2
b. 4
c. 6
d. 8
\qquad 145. What is the molarity of a solution containing 7.0 moles of solute in 569 mL of solution?
a. 81 M
b. 0.081 M
c. $\quad 12 \mathrm{M}$
d. 4.0 M
\qquad 146. What does the number 84 in the name krypton- 84 represent?
a. the atomic number
c. the sum of the protons and electrons
b. the mass number
d. twice the number of protons
\qquad 147. Dalton's atomic theory included which idea?
a. All atoms of all elements are the same size.
b. Atoms of different elements always combine in one-to-one ratios.
c. Atoms of the same element are always identical.
d. Individual atoms can be seen with a microscope.
148. How many liters of hydrogen gas are needed to react with CS_{2} to produce $2.50 \mathrm{~L} \mathrm{of}^{\mathrm{CH}} 44$ at STP?
$4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CS}_{2}(\mathrm{I}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
a. $\quad 2.50 \mathrm{~L}$
b. $\quad 5.00 \mathrm{~L}$
c. $\quad 7.50 \mathrm{~L}$
d. $\quad 10.0 \mathrm{~L}$
\qquad 149. Why do chemists use relative masses of atoms compared to a reference isotope rather than the actual masses of the atoms?
a. The actual mass of an electron is very large compared to the actual mass of a proton.
b. The actual masses of atoms are very small and difficult to work with.
c. The number of subatomic particles in atoms of different elements varies.
d. The actual masses of protons, electrons, and neutrons are not known.
\qquad 150. Which statement is true about electronegativity?
a. Electronegativity is the ability of an anion to attract another anion.
b. Electronegativity generally increases as you move from top to bottom within a group.
c. Electronegativity generally is higher for metals than for nonmetals.
d. Electronegativity generally increases from left to right across a period.
\qquad 151. Aluminum reacts with sulfuric acid to produce aluminum sulfate and hydrogen gas. How many grams of aluminum sulfate would be formed if $250 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ completely reacted with aluminum?
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
a. 0.85 g
b. 290 g
c. 450 g
d. 870 g
\qquad 152. Which of the following was NOT among Democritus's ideas?
a. Matter consists of tiny particles called atoms.
b. Atoms are indivisible.
c. Atoms retain their identity in a chemical reaction.
d. Atoms are indestructible.
\qquad 153. If 20.0 grams of Ca combines completely with 16.0 grams of S to form a compound, what is the percent composition of Ca in the compound?
a. 1.25%
b. 20.0%
c. 44.4%
d. 55.6%
\qquad 154. Which of the changes listed below would shift the following reaction to the right?
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. addition of Cl_{2}
c. increase of pressure
b. removal of O_{2}
d. decrease of pressure
\qquad 155. How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are produced when 10.0 moles of water react with an excess of $\mathrm{P}_{4} \mathrm{O}_{10}$?

$$
\mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(a q)
$$

a. $\quad 1.22 \mathrm{~g}$
b. 6.7 g
c. 147 g
d. 653 g
\qquad 156. Which of the following elements has the lowest electronegativity?
a. lithium
c. bromine
b. carbon
d. fluorine
\qquad 157. Which of the following diatomic molecules is joined by a double covalent bond?
a. O_{2}
b. Cl_{2}
c. N_{2}
d. He_{2}
\qquad 158. What particle is needed to complete this nuclear reaction?
${ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+$ \qquad
a. $\quad{ }_{2}^{4} \mathrm{He}$
b. ${ }_{-1}^{0} \mathrm{e}$
c. ${ }_{1}^{1} \mathrm{H}$
d. ${ }_{0}^{1} \mathrm{n}$
\qquad 159. What is conserved in the reaction shown below?
$\mathrm{N}_{2}(g)+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NF}_{3}(\mathrm{~g})$
a. atoms only
c. mass and atoms only
b. mass only
d. moles only
\qquad 160. How many protons, electrons, and neutrons does an atom with atomic number 50 and mass number 125 contain?
a. 50 protons, 50 electrons, 75 neutrons
b. 75 electrons, 50 protons, 50 neutrons
c. 120 neutrons, 50 protons, 75 electrons
d. 70 neutrons, 75 protons, 50 electrons
\qquad 161. The quantity of heat required to change the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$ is defined as \qquad .
a. a joule
c. a calorie
b. specific heat
d. density
\qquad 162. The molar mass of a certain gas is 49 g . What is the density of the gas in g / L at STP?
a. $3.6 \times 10^{-24} \mathrm{~g} / \mathrm{L}$
b. $\quad 0.46 \mathrm{~g} / \mathrm{L}$
c. $\quad 2.2 \mathrm{~g} / \mathrm{L}$
d. $\quad 71 \mathrm{~g} / \mathrm{L}$
\qquad 163. The reaction $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ is an example of which type of reaction?
a. combustion reaction
c. combination reaction
b. single-replacement reaction
d. decomposition reaction
\qquad 164. What is the correct name for the N^{3-} ion?
a. nitrate ion
c. nitride ion
b. nitrogen ion
d. nitrite ion
\qquad 165. At STP, how many liters of oxygen are required to react completely with 3.6 liters of hydrogen to form water?
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. $\quad 1.8 \mathrm{~L}$
b. 3.6 L
c. $\quad 2.0 \mathrm{~L}$
d. $\quad 2.4 \mathrm{~L}$
\qquad 166. Which of the following is true about the total number of reactants and the total number of products in the reaction shown below?
$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{I})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. 9 moles of reactants chemically change into 11 moles of product.
b. 9 grams of reactants chemically change into 11 grams of product.
c. 9 liters of reactants chemically change into 11 liters of product.
d. 9 atoms of reactants chemically change into 11 atoms of product.
\qquad 167. Which of the following is necessary to calculate the atomic mass of an element?
a. the atomic mass of carbon-12
b. the atomic number of the element
c. the relative masses of the element's protons and neutrons
d. the masses of each isotope of the element
\qquad 168. What is the percent by mass of carbon in acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$?
a. 20.7%
b. 62.1%
c. 1.61%
d. 30.0%
\qquad 169. Which of the following isotopes has the same number of neutrons as phosphorus-31?
a. $\quad{ }_{15}^{32} \mathrm{P}$
b. ${ }_{16}^{32} \mathrm{~S}$
c. ${ }_{14}^{29} \mathrm{Si}$
d. ${ }_{14}^{28} \mathrm{Si}$
\qquad 170. All atoms of the same element have the same \qquad .
a. number of neutrons
c. mass numbers
b. number of protons
d. mass
\qquad 171. All of the following are physical properties of matter EXCEPT \qquad .
a. mass
c. melting point
b. color
d. ability to rust
172. A catalyst works by \qquad .
a. lowering the activation energy barrier
b. shifting the equilibrium position toward the products
c. changing the temperature of the reactants
d. changing the particle size of the reactants
\qquad 173. The equation below shows the decomposition of lead nitrate. How many grams of oxygen are produced when $11.5 \mathrm{~g} \mathrm{NO}_{2}$ is formed?
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a. $\quad 1.00 \mathrm{~g}$
b. 2.00 g
c. 2.88 g
d. 32.0 g
\qquad 174. What are the missing coefficients for the skeleton equation below?
$\mathrm{Cr}(s)+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{Fe}(s)+\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(a q)$
a. $4,6,6,2$
b. $2,3,2,3$
c. $2,3,3,2$
d. $1,3,3,1$
\qquad 175. To what element does polonium-208 (atomic number 84) decay when it emits an alpha particle?
a. ${ }_{82}^{210} \mathrm{~Pb}$
b. ${ }_{82}^{210} \mathrm{Po}$
c. ${ }_{82}^{204} \mathrm{~Pb}$
d. ${ }_{86}^{214} \mathrm{Rn}$
\qquad 176. Which of these solutions is the most basic?
a. $\left[\mathrm{H}^{+}\right]=1 \times 10^{-2} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-4} \mathrm{M}$
c. $\quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-11} \mathrm{M}$
d. $\quad\left[\mathrm{OH}^{-}\right]=1 \times 10^{-13} \mathrm{M}$
\qquad 177. What happens to a reaction at equilibrium when more reactant is added to the system?
a. The reaction makes more products.
c. The reaction is unchanged.
b. The reaction makes more reactants.
d. The answer cannot be determined.
178. A vapor is which state of matter?
a. solid
c. gas
b. liquid
d. all of the above
\qquad 179. A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
a. The temperature of the metal will increase.
b. The temperature of the water will increase.
c. The temperature of the water will decrease.
d. The temperature of the water will increase and the temperature of the metal will decrease.
\qquad 180. A beta particle is $\mathrm{a}(\mathrm{n})$ \qquad —.
a. photon
c. helium nucleus
b. electron
d. hydrogen nucleus
\qquad 181. If the temperature of a piece of steel decreases, what happens to its density?
a. The density decreases.
b. The density increases.
c. The density does not change.
d. The density first increases, then decreases.
\qquad 182. How many joules are in 148 calories?
a. $\quad 35.4 \mathrm{~J}$
b. 619 J
c. 6.61 J
d. 148 J
\qquad 183. The specific heat of copper is about 0.40 joules $/ \mathrm{gram}{ }^{\circ} \mathrm{C}$. How much heat is needed to change the temperature of a 60.0 -gram sample of copper from $20.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$?
a. 720 J
b. 1200 J
c. 480 J
d. 960 J
\qquad 184. The ΔH is positive the reaction is \qquad -.
a. exothermic
b. endothermic
\qquad 185. Which of the following examples represent an exothermic reaction?
a. cooking food
b. freezing water
\qquad 186. What is the amount of heat required to raise the temperature of 200.0 g of aluminum by $10^{\circ} \mathrm{C}$? (specific heat of aluminum $=0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$)
a. $\quad 4.200 \times 10^{2} \mathrm{cal}$
b. $4.12 \times 10^{-2} \mathrm{cal}$
c. $\quad 4.2 \times 10^{2} \mathrm{cal}$
d. $4.20 \times 10^{3} \mathrm{cal}$
\qquad 187. How much heat needs to be absorbed by 100.0 g of water at $5.0^{\circ} \mathrm{C}$ to raise its temperature to $75.0^{\circ} \mathrm{C}$?
a. $\quad 3.0 \times 10^{4} \mathrm{~J}$
b. $\quad 1.57 \times 10^{5} \mathrm{~J}$
c. $\quad 2.93 \times 10^{4} \mathrm{~J}$
d. $2.926 \times 10^{4} \mathrm{~J}$
\qquad 188. What is the specific heat of a substance if 1560 cal are required to raise the temperature of a $312-\mathrm{g}$ sample by $15^{\circ} \mathrm{C}$?
a. $\quad 1.33 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
b. $\quad 0.33 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
c. $\quad 0.330 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
d. $\quad 0.033 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
\qquad 189. Which of the following is NOT a form of energy?
a. light
c. heat
b. electricity
d. pressure
\qquad 190. Dtermine the ΔH for the reaction.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+197.8 \mathrm{~kJ}
$$

a. +197.8 kJ
b. $\quad-197.8 \mathrm{~kJ}$
\qquad 191. Using the graph below, choose the correct formula to find the amount of heat change from E to F.

a. $\quad Q=m C \Delta T$
b. $\quad Q=m \Delta$ Hvap
c. $Q=m-\Delta H$ vap
d. $Q=m-\Delta H f u s$
e. $\quad Q=m \Delta$ Hfus
___ 192. Choose the correct formula to find the amount of heat change at A.

a. $\quad Q=m \Delta$ Hvap
b. $\quad Q=m C \Delta T$
c. $Q=m-\Delta H$ vap
d. $\quad Q=m \Delta H f u s$
e. $\quad Q=m-\Delta H f u s$
193. The following graph represents what type of reaction?

a. exothermic
b. endothermic
194. The orbital diagram for a ground-state nitrogen atom is

B. $\uparrow \downarrow \quad \uparrow \downarrow \quad \uparrow \downarrow \uparrow$
C. $\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
D. $\uparrow \downarrow$ $\downarrow \downarrow ~ \uparrow \downarrow \uparrow \uparrow$
a. A
b. B
c. C
d. D
\qquad 195. Which ground-state atom has an electron configuration described by the following orbital diagram?

$$
[\mathrm{Ne}] \frac{\uparrow \downarrow}{3 \mathrm{~s}} \quad \uparrow \frac{\uparrow}{3 \mathrm{p}} \uparrow
$$

a. phosphorus
b. nitrogen
c. arsenic
d. vanadium
\qquad 196. Using the diagram below, what will you see on the right of the prism?

a. a continuous spectrum
b. spectral lines
\qquad 197. Using the diagram below, which electromagnetic radiation would release the most energy?

a. radio waves
c. X-rays
b. infrared
d. gamma rays
\qquad 198. Using the diagram below, which of the following electromagnetic waves have the lowest frequencies?

a. ultraviolet light waves
c. microwaves
b. X-rays
d. gamma rays
\qquad 199. Which of the following quantum leaps would be associated with the greatest energy of emitted light?
a. $n=5$ to $n=1$
b. $n=4$ to $n=5$
c. $n=2$ to $n=5$
d. $n=5$ to $n=4$
\qquad 200. Which color of visible light has the longest wavelength?
a. red
c. blue
b. green
d. violet
\qquad 201. Arrange the following elements: $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$, in order of increasing ionic size.
a. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{P}^{3-}, \mathrm{S}^{2-}$
b. $\quad \mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$
c. $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{S}^{2-}, \mathrm{P}^{3-}$
d. $\quad \mathrm{Sc}^{3+}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{P}^{3-}$
\qquad 202. Choose the correct noble gas electron configuration for Plutonium
a. $\quad[R n] 7 s^{2} 5 f^{5} 6 d^{1}$
c. $\quad[\mathrm{Rn}] 7 \mathrm{~s}^{2} 5 \mathrm{f}^{5}$
b. [Xe] $7 \mathrm{~s}^{2} 5 f^{5} 6 \mathrm{~d}^{1}$
d. $\quad[\mathrm{Xe}] 7 \mathrm{~s}^{2} 5 \mathrm{f}^{6}$
203. The equilibrium constant expression for the reaction: $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})$ is
a. $\quad \mathrm{K}_{\text {eq }}=2[\mathrm{NO}] /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
b. $\mathrm{K}_{\text {eq }}=\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right] / 2[\mathrm{NO}]$
c. $\mathrm{K}_{\mathrm{eq}}=[\mathrm{NO}]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
d. $\quad \mathrm{K}_{\mathrm{eq}}=\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right] /[\mathrm{NO}]^{2}$
\qquad 204. Where is the transition state in the diagram below?

a. A
c. C
b. B
d. D
205.
pH Levels

$\left[\mathrm{H}_{3} \mathbf{0}^{+}\right]$	$\mathbf{p H}$	Example
1×100	0	$\mathrm{HCl}(4 \%)$
1×10^{-1}	1	Stomach acid
1×10^{-2}	2	Lemon juice
1×10^{-3}	3	Vinegar
1×10^{-4}	4	Soda
1×10^{-6}	5	Rainwater
1×10^{-6}	6	Milk
1×10^{-7}	7	Pure water
1×10^{-8}	8	Egg whites
1×10^{-9}	9	Baking soda
1×10^{-10}	10	Ammonia
1×10^{-11}	11	
1×10^{-12}	12	Drain cleaner
1×10^{-13}	13	NaOH (4\%)
1×10^{-14}	14	

Which substance is the most acidic?
a. Milk
c. Lemon juice
b. HCl
d. Baking soda
\qquad 206. An analysis of the equilibrium mixture in a 1-L flask gives the following results: $[\mathrm{HCl}]=.30$ $\mathrm{mol},\left[\mathrm{O}_{2}\right]=.20 \mathrm{~mol},\left[\mathrm{H}_{2} \mathrm{O}\right]=1.2 \mathrm{~mol}$, and $\left[\mathrm{Cl}_{2}\right]=.60$. Calculate the equilibrium constant given the concentrations.

$$
\text { b. } 0.51
$$

$$
\begin{aligned}
\mathbf{4 H C l}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) & <--->2 \mathbf{H}_{2} \mathbf{O}(\mathrm{~g})+2 \mathbf{C l}_{\mathbf{2}}(\mathrm{g})+\mathbf{1 0 k J} \\
& \text { c. } 2.2 \times 10^{2} \\
& \text { d. } 1.6
\end{aligned}
$$

$$
\text { a. } 3.2 \times 10^{2} \quad \text { c. } 2.2 \times 10^{2}
$$

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
\qquad 207. Which element(s) are in the unknown?

Below are diagrams for the bright line spectra of four elements and the spectrum of a mixture of unknown gases.

a. Li
c. He
b. H
d. Na
\qquad 208. Which of the following are strong acids (choose all that apply)?
a. HCN
d. $\mathrm{H}_{2} \mathrm{SO}_{3}$
b. HBr
e. HNO_{3}
c. HClO_{4}
\qquad 209. Which of the following are strong bases (choose all that apply)?
a. $\mathrm{Ca}(\mathrm{OH})^{2}$
c. NH3
b. $\mathrm{Al}(\mathrm{OH}) 3$
d. LiOH
\qquad 210. Which structural formulas represent nonpolar molecules? Choose all that apply
a. SiO_{2}
b. NH_{3}
c. CFH_{3}
d. $\mathrm{C}_{2} \mathrm{H}_{2}$
\qquad 211. What intermolecular forces are present in HNO? Choose all that apply
a. Dispersion
c. Hydrogen Bonding
b. Dipole-Dipole
d. Ionic Bonding
\qquad 212. Which of the following will conduct electricity, dissociate completely and produce a bright light? Choose all that apply.
a. strong acid
c. weak base
b. weak acid
d. strong base

Problem

213. Which of the following pictures best represents an exothermic reaction?
A.

Reaction pathway
B.

Progress of the reaction
214. Which graph belows represents the following reaction?
$\mathrm{Al}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+$ energy $<-->\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~g})$
1: A
2: B
3: C
4: D

(1)

(2)

(3)

(4)

Practice Final Spring 2016

Answer Section

MULTIPLE CHOICE

1. ANS: B

OBJ: 7.2.1
2. ANS: C

OBJ: 12.2.2
3. ANS: A OBJ: 18.2.1
4. ANS: D

OBJ: 8.2.1
5. ANS: B

OBJ: 19.2.1
6. ANS: A

OBJ: 9.4.1
7. ANS: C

OBJ: 12.3.2
8. ANS: D

OBJ: 19.4.1
9. ANS: B

OBJ: 2.2.1
10. ANS: C

OBJ: 18.1.2
11. ANS: B

OBJ: 6.3.2
12. ANS: C

OBJ: 6.3.3
13. ANS: D

OBJ: 11.1.3
14. ANS: B

OBJ: 25.1.2
15. ANS: A OBJ: 4.1.2
16. ANS: C

OBJ: 9.2.2| 9.5.2
17. ANS: D

OBJ: 11.1.3
18. ANS: B

OBJ: 7.1.3
19. ANS: A OBJ: 8.3.2
20. ANS: C OBJ: 9.3.2
21. ANS: A OBJ: 16.1.1

PTS: 1
DIF: L2
STA: Ch.2.a
PTS: 1 DIF: L2
STA: Ch.3.d
PTS: 1 DIF: L2
STA: Ch.8.a
PTS: 1
STA: Ch.2.a
PTS: 1
STA: Ch.5.f
PTS: 1 DIF: L2
STA: Ch.5.a
PTS: 1 DIF: L2
STA: Ch.3.f
PTS: 1
STA: Ch. 5
PTS: 1
STA: Ch. 6
PTS: 1
STA: Ch.8.c
PTS: 1
STA: Ch.1.c
PTS: 1
STA: Ch.1.c
PTS: 1 DIF: L1
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L2
STA: Ch.11.d
PTS: 1
DIF: L2

PTS: 1
DIF: L3
STA: Ch. 5
PTS: 1 DIF: L1
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L1
STA: Ch.1.c|Ch.2.a|Ch.1.d
PTS: 1
DIF: L1
STA: Ch.2.a
PTS: 1
DIF: L2
STA: Ch. 2
PTS: 1 DIF: L2

REF: p. 192 | p. 195
REF: p. 360 | p. 361 | p. 362
REF: p. 549

REF: p. 221

REF: p. 595

REF: p. 272
REF: p. 375

REF: p. 587
REF: p. 40

REF: p. 546 | p. 547
REF: p. 162 | p. 163 | p. 172

REF: p. 174

REF: p. 324 | p. 325
REF: p. 801

REF: p. 104
REF: p. 257 | p. 264

REF: p. 327
REF: p. 190

REF: p. 232
REF: p. 269

REF: p. 471 | p. 472

22.	ANS: B OBJ: 19.2.2	PTS: 1 STA: Ch.5.d	DIF:	L1	REF:	p. 598	
23.	ANS: D OBJ: 5.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.g } \end{aligned}$	DIF:	L2	REF:	p. 133 \| p. 134	p. 135
24.	ANS: A OBJ: 18.2.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.9.a } \end{aligned}$	DIF:	L2	REF:	p. 554	
25.	ANS: B OBJ: 4.3.1\|4.3.2	PTS: 1 STA: Ch.11.c	DIF:	L3	REF:	p. 111 \| p. 112	p. 113
26.	ANS: D OBJ: 4.3.3	PTS: 1	DIF:	L1	REF:	p. 114	
27.	ANS: A OBJ: 10.2.2	$\begin{array}{ll} \text { PTS: } \\ \text { STA: } & \text { Ch. } \end{array}$	DIF:	L1	REF:	p. 302	
28.	ANS: B OBJ: 9.3.2\|9.5.3	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.2.b \| Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 269 \| p. 277	
29.	ANS: A OBJ: 3.1.3	PTS: 1	DIF:	L1	REF:	p. 66	
30.	ANS: C OBJ: 4.2.2	PTS: 1 STA: Ch.1.h	DIF:	L2	REF:	p. 108	
31.	ANS: C OBJ: 4.2.1\|4.2.2	PTS: 1 STA: Ch.11.a	DIF:	L2	REF:	p. 106 \| p. 107	
32.	ANS: D OBJ: 3.1.1	PTS: 1	DIF:	L1	REF:	p. 63	
33.	ANS: B OBJ: 5.1.3	PTS: 1 STA: Ch.1.i	DIF:	L2	REF:	p. 131	
34.	ANS: A OBJ: 11.2.2	PTS: 1	DIF:	L1	REF:	p. 334 \| p. 335	
35.	ANS: B OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 262	
36.	ANS: B OBJ: 19.1.2	PTS: 1 STA: Ch.5.e	DIF:	L1	REF:	p. 591	
37.	ANS: B OBJ: 12.1.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.3.a } \end{aligned}$	DIF:	L2	REF:	p. 356	
38.	ANS: A OBJ: 6.1.1	PTS: 1 STA: Ch.1.a	DIF:	L2	REF:	p. 157	
39.	ANS: B OBJ: 18.1.1	PTS: 1 STA: Ch.8.d	DIF:	L1	REF:	p. 544	
40.	ANS: C OBJ: 4.3.1	PTS: 1 STA: Ch.11.c	DIF:	L2	REF:	p. 112	
41.	ANS: B OBJ: 7.1.1	PTS: 1 STA: Ch.1.c\|Ch.2.	DIF: \|Ch.		REF:	p. 188	
42.	ANS: B OBJ: 2.1.1	PTS: 1	DIF:	L1	REF:	p. 39	
43.	ANS: C OBJ: 6.3.3	PTS: 1 STA: Ch.1.c	DIF:	L2	REF:	p. 173	
44.	ANS: C OBJ: 8.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.2.a } \end{aligned}$	DIF:	L2	REF:	p. 217	
45.	ANS: C OBJ: 11.1.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.3.a } \end{aligned}$	DIF:	L1	REF:	p. 323	

46. ANS: D

OBJ: 19.1.2
47. ANS: C

OBJ: 2.1.3
48. ANS: C

OBJ: 3.2.3
49. ANS: B

OBJ: 6.3.1
50. ANS: D

OBJ: 4.3.1
51. ANS: B

OBJ: 19.3.1
52. ANS: B OBJ: 4.3.1|4.3.4
53. ANS: B

OBJ: 25.1.2
54. ANS: B OBJ: 18.1.1
55. ANS: A

OBJ: 11.1.3
56. ANS: C OBJ: 3.1.2
57. ANS: A

OBJ: 6.3.3
58. ANS: A

OBJ: 16.2.1
59. ANS: B

OBJ: 12.2.2
60. ANS: D

OBJ: 25.1.2|25.2.1
61. ANS: C

OBJ: 18.2.1
62. ANS: B

OBJ: 11.2.1
63. ANS: B

OBJ: 16.2.1
64. ANS: C

OBJ: 4.3.2
65. ANS: D

OBJ: 16.2.1
66. ANS: C

OBJ: 5.2.1
67. ANS: A

OBJ: 19.1.1
68. ANS: B

OBJ: 9.1.1
69. ANS: B

OBJ: 11.1.3

PTS: 1
DIF: L2
STA: Ch.5.e
PTS: 1
STA: Ch.2.d
PTS: 1 DIF: L1
STA: Ch.4.e
PTS: 1
STA: Ch.1.a
PTS: 1
STA: Ch.11.c
PTS: 1
STA: Ch.5.c
PTS: 1
STA: Ch.1.a
PTS: 1 DIF: L2
STA: Ch.11.d
PTS: 1
STA: Ch.9.c
PTS: 1 DIF: L1
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L2
PTS: 1 DIF: L2
STA: Ch.1.c
PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.3.d
PTS: 1
PTS: 1
STA: Ch.9.b
PTS: 1
STA: Ch.3.a|Ch.3.e
PTS: 1 DIF: L2
STA: Ch.6.d
PTS: 1

PTS: 1
STA: Ch.6.d
PTS: 1
STA: Ch.1.i
PTS: 1
STA: Ch.5.a
PTS: 1

PTS: 1
STA: Ch.3.a|Ch.3.e

REF: p. 591

REF: p. 42
REF: p. 77 | p. 78
REF: p. 171 | p. 175
REF: p. 112 | p. 113

REF: p. 607
REF: p. 111
REF: p. 801

REF: p. 542

REF: p. 324 | p. 325
REF: p. 66
REF: p. 175

REF: p. 480 | p. 482
REF: p. 360 | p. 361 | p. 362
REF: p. 800 | p. 804
REF: p. 550

REF: p. 336

REF: p. 481

REF: p. 111

REF: p. 481 | p. 482
REF: p. 131

REF: p. 587
REF: p. 254

REF: p. 327
70. ANS: B

OBJ: 10.1.3
71. ANS: B

OBJ: 8.4.3
72. ANS: A

OBJ: 18.2.2
73. ANS: D

OBJ: 19.2.1
74. ANS: C

OBJ: 4.2.1
75. ANS: C

OBJ: 11.2.1
76. ANS: D

OBJ: 19.2.1
77. ANS: A

OBJ: 11.2.2
78. ANS: A

OBJ: 25.1.2
79. ANS: D

OBJ: 6.3.1
80. ANS: D

OBJ: 9.3.2|9.5.2
81. ANS: A

OBJ: 4.2.1|4.3.1
82. ANS: B

OBJ: 3.3.2
83. ANS: C OBJ: 2.1.4
84. ANS: A OBJ: 7.1.1
85. ANS: A

OBJ: 19.1.2
86. ANS: B

OBJ: 9.3.2
87. ANS: D

OBJ: 4.3.2
88. ANS: B

OBJ: 12.2.2
89. ANS: A

OBJ: 18.2.2
90. ANS: A

OBJ: 8.3.2
91. ANS: D

OBJ: 11.1.2
92. ANS: A

OBJ: 7.1.4
93. ANS: D

OBJ: 4.3.3

PTS: 1
STA: Ch. 3
PTS: 1
STA: Ch.2.a
PTS: 1
STA: Ch.9.a
PTS: 1
STA: Ch.5.c
PTS: 1
STA: Ch. 1
PTS: 1
PTS: 1
STA: Ch.5.d
PTS: 1
PTS: 1
STA: Ch.11.e
PTS: 1
STA: Ch.1.a
PTS: 1
STA: Ch. 5
PTS: 1
STA: Ch.1.a
PTS: 1
PTS: 1
PTS: 1
STA: Ch.1.g
PTS: 1
STA: Ch.5.e
PTS: 1
STA: Ch. 2
PTS: 1
PTS: 1
STA: Ch.3.d
PTS: 1
STA: Ch.8.b
PTS: 1
STA: Ch.2.a
PTS: 1
STA: Ch.3.a
PTS: 1
STA: Ch.1.g
PTS: 1

DIF: L2
DIF: L1
DIF: L2
DIF: L1

DIF: L3
DIF: L1
DIF: L1
DIF: L1
DIF: L1
DIF: L2
DIF: L2
DIF: L2
DIF: L1
DIF: L2
DIF: L2

DIF: L2
DIF: L2
DIF: L2
DIF: L2
DIF: L2
DIF: L2
DIF: L1
DIF: L2
DIF: L2

REF: p. 294
REF: p. 240
REF: p. 552 | p. 553
REF: p. 594
REF: p. 106
REF: p. 333
REF: p. 595
REF: p. 336 | p. 337
REF: p. $800 \mid$ p. 802
REF: p. 171
REF: p. $270 \mid$ p. 278
REF: p. 110
REF: p. 84
REF: p. 42
REF: p. 188 | p. 189
REF: p. 592
REF: p. 269
REF: p. 112 | p. 113
REF: p. $360 \mid$ p. 361 | p. 362
REF: p. 554
REF: p. 233
REF: p. 323
REF: p. 192
REF: p. 115

94.	ANS: D OBJ: 12.3.2	PTS: 1 STA: Ch.3.f	DIF:	L2	REF:	p. 375
95.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 546
	OBJ: 18.1.2	STA: Ch.8.c				
96.	ANS: C	PTS: 1	DIF:	L3	REF:	p. 112 \| p. 113
	OBJ: 4.3.1	STA: Ch.11.c				
97.	ANS: C	PTS: 1	DIF:	L1	REF:	p. 800
	OBJ: 25.1.2	STA: Ch.11.d				
98.	ANS: D	PTS: 1	DIF:	L1	REF:	p. 45
	OBJ: 2.2.2					
99.	ANS: D	PTS: 1	DIF:	L1	REF:	p. 594
	OBJ: 19.2.1	STA: Ch.5.b				
100.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 112 \| p. 113
	OBJ: 4.3.1	STA: Ch.11.c				
101.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 333
	OBJ: 11.2.2					
102.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 157
	OBJ: 6.2.1	STA: Ch.1.a				
103.	ANS: D	PTS: 1	DIF:	L1	REF:	p. 481
	OBJ: 16.2.1	STA: Ch.6.d				
104.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 217
	OBJ: 8.2.1	STA: Ch.2.a				
105.	ANS: D	PTS: 1	DIF:	L2	REF:	p. 40
	OBJ: 2.1.2					
106.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 172 \| p. 176
	OBJ: 6.3.3	STA: Ch.1.c				
107.	ANS: D	PTS: 1	DIF:	L2	REF:	p. 800
	OBJ: 25.1.2	STA: Ch.11.d				
108.	ANS: A	PTS: 1	DIF:	L2	REF:	p. 107 \| p. 108
	OBJ: 4.2.2	STA: Ch.1.e				
109.	ANS: A	PTS: 1	DIF:	L1	REF:	p. 506
	OBJ: 17.1.2	STA: Ch.7.b				
110.	ANS: C	PTS: 1	DIF:	L1	REF:	p. 271
	OBJ: 9.4.1	STA: Ch.5.a				
111.	ANS: B	PTS: 1	DIF:	L1	REF:	p. 240
	OBJ: 8.4.3	STA: Ch.2.a				
112.	ANS: B	PTS: 1	DIF:	L2	REF:	p. 115
	OBJ: 4.3.3	STA: Ch.1.a				
113.	ANS: B	PTS: 1	DIF:	L2	REF:	p. 290 \| p. 291
	OBJ: 10.1.2	STA: Ch.3.d				
114.	ANS: C	PTS: 1	DIF:	L3	REF:	p. 803 \| p. 804
	OBJ: 25.2.1	STA: Ch.11.d				
115.	ANS: C	PTS: 1	DIF:	L1	REF:	p. 802
	OBJ: 25.1.2	STA: Ch.11.e				
116.	ANS: C	PTS: 1	DIF:	L1	REF:	p. 800
	OBJ: 25.1.2	STA: Ch.11.d				
117.	ANS: D	PTS: 1	DIF:	L2	REF:	p. 800
	OBJ: 25.1.2	STA: Ch.11.e				

118.	$\begin{aligned} & \text { ANS: B } \\ & \text { OBJ: } 10.2 .2 \end{aligned}$	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.4.h } \end{aligned}$	DIF:	L2	REF:	p. 301	
119.	ANS: A OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 262	
120.	ANS: C OBJ: 3.1.2	PTS: 1	DIF:	L1	REF:	p. 66	
121.	ANS: B OBJ: 16.2.1	PTS: 1 STA: Ch.6.d	DIF:	L1	REF:	p. 480	
122.	ANS: A OBJ: 2.2.2	PTS: 1 STA: Ch. 6	DIF:	L1	REF:	p. 45	
123.	ANS: B OBJ: 19.3.1	PTS: 1 STA: Ch.5.c	DIF:	L1	REF:	p. 605	
124.	ANS: B OBJ: 8.1.1\|8.4.3	PTS: 1 STA: Ch.2.a	DIF:	L1	REF:	p. 240	
125.	ANS: A OBJ: 11.1.2	PTS: 1 STA: Ch.3.a	DIF:	L1	REF:	p. 323	
126.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: 7.1.1 } \end{aligned}$	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.g } \end{aligned}$	DIF:	L2	REF:	p. 190	
127.	ANS: D OBJ: 7.1.1	PTS: 1 STA: Ch.1.c	DIF: \| Ch.1	L1	REF:	p. 187	
128.	ANS: D OBJ: 9.2.1\|9.5.2	PTS: 1 STA: Ch. 5	DIF:	L2	REF:	p. 261 \| p. 262	p. 277
129.	ANS: D OBJ: 4.2.1	PTS: 1 STA: Ch.1.a	DIF:	L2	REF:	p. 104 \| p. 105	p. 106
130.	ANS: C OBJ: 10.1.4	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch. } \end{aligned}$	DIF:	L2	REF:	p. 295 \| p. 296	
131.	ANS: B OBJ: 12.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.3.d } \end{aligned}$	DIF:	L2	REF:	p. 359 \| p. 360	
132.	ANS: B OBJ: 19.1.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.5.b } \end{aligned}$	DIF:	L2	REF:	p. 591	
133.	ANS: D OBJ: 4.3.1	PTS: 1 STA: Ch.1.a	DIF:	L1	REF:	p. 110	
134.	ANS: A OBJ: 5.3.2	PTS: 1 STA: Ch.1.j	DIF:	L2	REF:	p. 141	
135.	ANS: D OBJ: 8.2.2	PTS: 1 STA: Ch.1.g	DIF:	L3	REF:	p. 220 \| p. 234	
136.	ANS: B OBJ: 8.2.1\|8.2.4	PTS: 1 STA: Ch.2.a	DIF:	L2	REF:	p. 222	
137.	ANS: B OBJ: 5.1.3	PTS: 1 STA: Ch.1.i	DIF:	L3	REF:	p. 132	
138.	ANS: B OBJ: 18.2.3	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.9.c } \end{aligned}$	DIF:	L1	REF:	p. 556	
139.	ANS: B OBJ: 8.2.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.2.a } \end{aligned}$	DIF:	L2	REF:	p. 217	
140.	ANS: B OBJ: 19.3.3	PTS: 1 STA: Ch.5.c	DIF:	L2	REF:	p. 607	
141.	ANS: B OBJ: 19.2.2	PTS: 1 STA: Ch.5.d	DIF:	L1	REF:	p. 597	

MULTIPLE RESPONSE

207. ANS: B, C
208. ANS: B, C, E
209. ANS: A, D
210. ANS: A, D 2f

PTS: 1
211. ANS: A, B, C PTS: 1
212. ANS: A, D

PTS: 1
PTS: 1
PTS: 1

PTS: 1

PROBLEM
213. ANS:

B

PTS: 1
214. ANS:

B
PTS: 1

