\qquad
\qquad
\qquad

2015 Fall Midterm Practice Test

Matching

You will need your own calculator for the midterm. Question about the midterm will not be answered on the midterm day. You need to start studying early.

Match each item with the correct statement below.
a. mixture
d. reactant
b. product
e. heterogeneous mixture
c. phase
f. vapor

1. gaseous state of substance that is a liquid or solid at room temperature
2. a physical blend of two or more components
3. not uniform in composition
4. a substance formed in a chemical reaction
5. starting substance in a chemical reaction

Match each item with the correct statement below.
a. distillation
d. compound
b. mass
e. element
c. chemical reaction
f. homogeneous
6. amount of matter an object contains
7. describes mixture with a uniform composition
8. substance that cannot be changed into simpler substances by chemical means
9. composed of two or more substances chemically combined in a fixed proportion
10. process in which substances are changed into different substances

Match each item with the correct statement below.
a. proton
d. electron
b. nucleus
e. neutron
c. atom
11. the smallest particle of an element that retains the properties of that element
12. a positively charged subatomic particle
13. a negatively charged subatomic particle
14. a subatomic particle with no charge
15. the central part of an atom, containing protons and neutrons

Match each item with the correct statement below.
a. mass number
d. atomic mass
b. atomic mass unit
e. isotope
c. atomic number
16. atoms with the same number of protons, but different numbers of neutrons in the nucleus of an atom
17. the total number of protons and neutrons in the nucleus of an atom
18. the number of protons in the nucleus of an element
19. the weighted average of the masses of the isotopes of an element
20. one-twelfth the mass of a carbon atom having six protons and six neutrons

Match each item with the correct statement below.
a. positron
d. transuranium element
b. alpha particle
e. gamma radiation
c. beta particle
f. transmutation
21. emitted helium nucleus
22. high-energy photons emitted by a radioisotope
23. particle of charge +1 and mass equal to that of an electron

Match each item with the correct statement below.
a. atomic orbital
d. ground state
b. aufbau principle
e. Pauli exclusion principle
c. electron configuration
f. Heisenberg uncertainty principle
24. region of high probability of finding an electron
25. states the impossibility of knowing both velocity and position of a moving particle at the same time
26. lowest energy level
27. tendency of electrons to enter orbitals of lowest energy first
28. arrangement of electrons around atomic nucleus
29. each orbital has at most two electrons

Match each item with the correct statement below.
a. atomic emission spectrum
d. photon
b. frequency
e. quantum
c. wavelength
f. spectrum
30. discrete bundle of electromagnetic energy
31. energy needed to move an electron from one energy level to another
32. number of wave cycles passing a point per unit of time
33. distance between wave crests
34. separation of light into different wavelengths
35. frequencies of light emitted by an element

Multiple Choice

Identify the choice that best completes the statement or answers the question.
36. A theory is a \qquad -
a. proposed explanation for an observation
b. well-tested explanation for a broad set of observations
c. summary of the results of many observations
d. procedure used to test a proposed explanation
37. The variable that is observed during an experiment is called what type of variable?
a. independent
c. controlling
b. manipulated
d. responding
38. Which of the following is NOT an example of matter?
a. air
c. smoke
b. heat
d. water vapor
39. An example of an extensive property of matter is \qquad .
a. temperature
c. mass
b. pressure
d. hardness
40. All of the following are physical properties of matter EXCEPT \qquad ـ.
a. mass
c. melting point
b. color
d. ability to rust
41. A vapor is which state of matter?
a. solid
c. gas
b. liquid
d. all of the above
42. Which of the following is a physical change?
a. corrosion
c. evaporation
b. explosion
d. rotting of food
43. Which of the following CANNOT be classified as a substance?
a. table salt
c. nitrogen
b. air
d. gold
44. Which of the following is a homogeneous mixture?
a. salt water
c. sand and water
b. beef stew
d. soil
45. Separating a solid from a liquid by evaporating the liquid is called \qquad .
a. filtration
c. solution
b. condensation
d. distillation
46. What distinguishes a substance from a mixture?
a. Substances are compounds, and mixtures are not.
b. Mixtures are groupings of elements, and compounds are not.
c. Samples of the same substance can have different intensive properties.
d. Mixtures can be separated physically, while compounds cannot.
47. Which of the following represents a compound?
a. H
c. $\mathrm{H}_{2} \mathrm{O}$
b. H-3
d. $\mathrm{O}-16$
48. Which of the following is NOT a physical change?
a. grating cheese
c. fermenting of cheese
b. melting cheese
d. mixing two cheeses in a bowl
49. Which of the following processes does NOT involve a change in chemical properties?
a. rusting
c. boiling
b. fermenting
d. burning
50. A chemical change occurs when a piece of wood \qquad
a. is split
c. decays
b. is painted
d. is cut
51. Which of the following is a chemical property of water at $4^{\circ} \mathrm{C}$?
a. its color
b. its state
c. its temperature
d. its ability to decompose into hydrogen and oxygen
52. Which of the following indicates that a chemical change has happened during cooking?
a. The food darkens.
b. Bubbles form in boiling water.
c. Butter melts.
d. Energy is transferred from the stove to a pan.
53. Which of the following does NOT indicate that a chemical change may have taken place?
a. fracture formation
c. precipitate formation
b. gas production
d. energy transfer
54. Who was the man who lived from 460B.C.-370B.C. and was among the first to suggest the idea of atoms?
a. Atomos
c. Democritus
b. Dalton
d. Thomson
55. The smallest particle of an element that retains the properties of that element is $\mathrm{a}(\mathrm{n})$ \qquad _.
a. atom
c. proton
b. electron
d. neutron
56. Dalton's atomic theory included which idea?
a. All atoms of all elements are the same size.
b. Atoms of different elements always combine in one-to-one ratios.
c. Atoms of the same element are always identical.
d. Individual atoms can be seen with a microscope.
57. Why did J. J. Thomson reason that electrons must be a part of the atoms of all elements?
a. Cathode rays are negatively-charged particles.
b. Cathode rays can be deflected by magnets.
c. An electron is 2000 times lighter than a hydrogen atom.
d. Charge-to-mass ratio of electrons was the same, regardless of the gas used.
58. Which of the following is true about subatomic particles?
a. Electrons are negatively charged and are the heaviest subatomic particle.
b. Protons are positively charged and the lightest subatomic particle.
c. Neutrons have no charge and are the lightest subatomic particle.
d. The mass of a neutron nearly equals the mass of a proton.
59. All atoms are \qquad .
a. positively charged, with the number of protons exceeding the number of electrons
b. negatively charged, with the number of electrons exceeding the number of protons
c. neutral, with the number of protons equaling the number of electrons
d. neutral, with the number of protons equaling the number of electrons, which is equal to the number of neutrons
60. As a consequence of the discovery of the nucleus by Rutherford, which model of the atom is thought to be true?
a. Protons, electrons, and neutrons are evenly distributed throughout the volume of the atom.
b. The nucleus is made of protons, electrons, and neutrons.
c. Electrons are distributed around the nucleus and occupy almost all the volume of the atom.
d. The nucleus is made of electrons and protons.
61. The nucleus of an atom is \qquad _.
a. the central core and is composed of protons and neutrons
b. positively charged and has more protons than neutrons
c. negatively charged and has a high density
d. negatively charged and has a low density
62. An element has an atomic number of 76. The number of protons and electrons in a neutral atom of the element are \qquad .
a. 152 protons and 76 electrons
b. 76 protons and 0 electrons
c. 38 protons and 38 electrons
d. 76 protons and 76 electrons
63. What does the number 84 in the name krypton- 84 represent?
a. the atomic number
c. the sum of the protons and electrons
b. the mass number
d. twice the number of protons
64. Isotopes of the same element have different \qquad
a. positions on the periodic table
c. atomic numbers
b. chemical behavior
d. mass numbers
\qquad 65. In which of the following sets is the symbol of the element, the number of protons, and the number of electrons given correctly?
a. In, 49 protons, 49 electrons
c. Cs, 55 protons, 132.9 electrons
b. $\mathrm{Zn}, 30$ protons, 60 electrons
d. F, 19 protons, 19 electrons
66. Using the periodic table, determine the number of neutrons in ${ }^{16} \mathrm{O}$.
a. 4
b. 8
c. 16
d. 24
\qquad 67. Which of the following equals one atomic mass unit?
a. the mass of one electron
b. the mass of one helium- 4 atom
c. the mass of one carbon- 12 atom
d. one-twelfth the mass of one carbon- 12 atom
68. Which of the following statements is NOT true?
a. Protons have a positive charge.
b. Electrons are negatively charged and have a mass of 1 amu.
c. The nucleus of an atom is positively charged.
d. Neutrons are located in the nucleus of an atom.
69. When Group 2A elements form ions, they \qquad
a. lose two protons
b. gain two protons
c. lose two electrons .
. What is the correct name for the N^{3-} ion?
a. nitrate ion
c. nitride ion
b. nitrogen ion
d. nitrite ion
71. Which of the following compounds contains the Mn^{3+} ion?
a. MnS
b. MnBr_{2}
c. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
d. MnO
72. Which of the following formulas represents an ionic compound?
a. CS_{2}
b. BaI_{2}
c. $\mathrm{N}_{2} \mathrm{O}_{4}$
d. PCl_{3}
73. Which of the following correctly represents an ion pair and the ionic compound the ions form?
a. $\mathrm{Ca}^{2-}, \mathrm{F}^{-} ; \mathrm{CaF}_{2}$
b. $\mathrm{Na}^{+}, \mathrm{Cl}^{-} ; \mathrm{NaCl}_{2}$
c. $\mathrm{Ba}^{2+}, \mathrm{O}^{2-} ; \mathrm{Ba}_{2} \mathrm{O}_{2}$
d. $\mathrm{Pb}^{4+}, \mathrm{O}^{2-} ; \mathrm{Pb}_{2} \mathrm{O}_{4}$
74. Which of the following compounds contains the lead(II) ion?
a. PbO
b. PbCl_{4}
c. $\mathrm{Pb}_{2} \mathrm{O}$
d. $\mathrm{Pb}_{2} \mathrm{~S}$
75. Which set of chemical name and chemical formula for the same compound is correct?
a. iron(II) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$
c. $\mathrm{tin}(\mathrm{IV})$ bromide, SnBr_{4}
b. aluminum fluorate, AlF_{3}
d. potassium chloride, $\mathrm{K}_{2} \mathrm{Cl}_{2}$
76. What is the correct formula for potassium sulfite?
a. KHSO_{3}
b. KHSO_{4}
c. $\mathrm{K}_{2} \mathrm{SO}_{3}$
d. $\mathrm{K}_{2} \mathrm{SO}_{4}$
77. Which set of chemical name and chemical formula for the same compound is correct?
a. ammonium sulfite, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
c. lithium carbonate, LiCO_{3}
b. iron(III) phosphate, FePO_{4}
d. magnesium dichromate, MgCrO_{4}
78. Molecular compounds are usually \qquad -.
a. composed of two or more transition elements
b. composed of positive and negative ions
c. composed of two or more nonmetallic elements
d. exceptions to the law of definite proportions
79. Consider a mystery compound having the formula $\mathrm{M}_{x} \mathrm{~T}_{y}$. If the compound is not an acid, if it contains only two elements, and if M is not a metal, which of the following is true about the compound?
a. It contains a polyatomic ion.
c. Its name ends in -ic.
b. Its name ends in -ite or -ate.
d. It is a binary molecular compound.
80. Which of the following shows both the correct formula and correct name of an acid?
a. HClO_{2}, chloric acid
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$, phosphoric acid
b. HNO_{2}, hydronitrous acid
d. HI, iodic acid
81. What is the name of $\mathrm{H}_{2} \mathrm{SO}_{3}$?
a. hyposulfuric acid
c. sulfuric acid
b. hydrosulfuric acid
d. sulfurous acid
82. What is the formula for phosphoric acid?
a. $\mathrm{H}_{2} \mathrm{PO}_{3}$
b. $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. HPO_{2}
d. HPO_{4}
83. What is the correct name for the compound CoCl_{2} ?
a. cobalt(I) chlorate
c. cobalt(II) chlorate
b. cobalt(I) chloride
d. cobalt(II) chloride
84. What is the correct formula for calcium dihydrogen phosphate?
a. $\mathrm{CaH}_{2} \mathrm{PO}_{4}$
b. $\mathrm{Ca}_{2} \mathrm{H}_{2} \mathrm{PO}_{4}$
c. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
d. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{HPO}_{4}\right)_{2}$
85. Which of the following is the correct name for $\mathrm{N}_{2} \mathrm{O}_{5}$?
a. nitrous oxide
c. nitrogen dioxide
b. dinitrogen pentoxide
d. nitrate oxide
86. What particle is emitted in alpha radiation?
a. electron
c. helium nucleus
b. photon
d. hydrogen nucleus
87. A beta particle is $a(n)$ \qquad .
a. photon
c. helium nucleus
b. electron
d. hydrogen nucleus
88. The least penetrating form of radiation is \qquad .
a. beta radiation
c. alpha radiation
b. gamma radiation
d. X rays
89. Which of the following materials is necessary to stop an alpha particle?
a. three feet of concrete
c. single sheet of aluminum foil
b. three inches of lead
d. single sheet of paper
90. What particle decomposes to produce the electron of beta radiation?
a. proton
c. electron
b. neutron
d. positron
91. What symbol is used for beta radiation?
a. $\quad{ }_{0}^{0} \mathrm{e}$
b. ${ }_{-1}^{0} \mathrm{e}$
c. $\quad{ }_{0}^{-1} \mathrm{e}$
d. $\quad{ }_{-1}^{-1} \mathrm{e}$
92. Which of the following materials is necessary to stop a beta particle?
a. three feet of concrete
c. thin pieces of wood
b. three inches of lead
d. single sheet of paper
93. When radium-226 (atomic number 88) decays by emitting an alpha particle, it becomes \qquad .
a. polonium-222
c. radium-222
b. polonium-224
d. radon-222
94. What particle is needed to complete the following nuclear equation?
${ }_{25}^{56} \mathrm{Mn} \rightarrow$ \qquad $+{ }_{-1}^{0} \mathrm{e}$
a. ${ }_{27}^{56} \mathrm{Co}$
b. $\quad{ }_{25}^{27} \mathrm{Mn}$
c. ${ }_{26}^{56} \mathrm{Fe}$
d. ${ }_{24}^{58} \mathrm{Cr}$
95. A reaction in which small nuclei combine to form a heavier nucleus is called \qquad -
a. fission
c. background radiation
b. a chemical reaction
d. fusion
96. Nuclear fusion \qquad .
a. takes place in the sun
c. can be controlled in the laboratory
b. occurs at low temperatures
d. is used in medicine
97. A reaction that results in the combining of smaller atomic nuclei is \qquad -.
a. chemical
c. fusion
b. fission
d. ionization
98. In Bohr's model of the atom, where are the electrons and protons located?
a. The electrons move around the protons, which are at the center of the atom.
b. The electrons and protons move throughout the atom.
c. The electrons occupy fixed positions around the protons, which are at the center of the atom.
d. The electrons and protons are located throughout the atom, but they are not free to move.
99. The principal quantum number indicates what property of an electron?
a. position
c. energy level
b. speed
d. electron cloud shape
\qquad 100. How many energy sublevels are in the second principal energy level?
a. 1
b. 2
c. 3
d. 4
\qquad 101. What is the maximum number of f orbitals in any single energy level in an atom?
a. 1
b. 3
c. 5
d. 7
\qquad 102. What is the maximum number of electrons in the second principal energy level?
a. 2
b. 8
c. $\quad 18$
d. 32
\qquad 103. When an electron moves from a lower to a higher energy level, the electron \qquad .
a. always doubles its energy
b. absorbs a continuously variable amount of energy
c. absorbs a quantum of energy
d. moves closer to the nucleus
\qquad 104. If the spin of one electron in an orbital is clockwise, what is the spin of the other electron in that orbital?
a. zero
c. counterclockwise
b. clockwise
d. both clockwise and counterclockwise
\qquad 105. What types of atomic orbitals are in the third principal energy level?
a. $\quad s$ and p only
b. $\quad p$ and d only
c. s, p, and d only
d. s, p, d, and f
\qquad 106. What is the electron configuration of potassium?
a. $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{2} 4 s^{1}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{10} 3 s^{2} 3 p^{3}$
c. $\quad 1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 3 d^{1}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
\qquad 107. If three electrons are available to fill three empty $2 p$ atomic orbitals, how will the electrons be distributed in the three orbitals?
a. one electron in each orbital
b. two electrons in one orbital, one in another, none in the third
c. three in one orbital, none in the other two
d. Three electrons cannot fill three empty $2 p$ atomic orbitals.
\qquad 108. How many unpaired electrons are in a sulfur atom (atomic number 16)?
a. 0
b. 1
c. 2
d. 3
\qquad 109. How many half-filled orbitals are in a bromine atom?
a. 1
b. 2
c. 3
d. 4
\qquad 110. How does the speed of visible light compare with the speed of gamma rays, when both speeds are measured in a vacuum?
a. The speed of visible light is greater.
b. The speed of gamma rays is greater.
c. The speeds are the same.
d. No answer can be determined from the information given.
\qquad 111. Which color of visible light has the shortest wavelength?
a. yellow
c. blue
b. green
d. violet
\qquad 112. Which of the following electromagnetic waves have the highest frequencies?
a. ultraviolet light waves
c. microwaves
b. X-rays
d. gamma rays
___ 113. Which type of electromagnetic radiation includes the wavelength $10^{-7} \mathrm{~m}$?
a. gamma ray
c. radio wave
b. microwave
d. visible light
\qquad 114. How are the frequency and wavelength of light related?
a. They are inversely proportional to each other.
b. Frequency equals wavelength divided by the speed of light.
c. Wavelength is determined by dividing frequency by the speed of light.
d. They are directly proportional to each other.
\qquad 115. Emission of light from an atom occurs when an electron \qquad .
a. drops from a higher to a lower energy level
b. jumps from a lower to a higher energy level
c. moves within its atomic orbital
d. falls into the nucleus
\qquad 116. As changes in energy levels of electrons increase, the frequencies of atomic line spectra they emit \qquad .
a. increase
c. remain the same
b. decrease
d. cannot be determined
\qquad 117. The atomic emission spectra of a sodium atom on Earth and of a sodium atom in the sun would be \qquad .
a. the same
b. different from each other
c. the same as those of several other elements
d. the same as each other only in the ultraviolet range
\qquad 118. Which of the following quantum leaps would be associated with the greatest energy of emitted light?
a. $n=5$ to $n=1$
b. $n=4$ to $n=5$
c. $\mathrm{n}=2$ to $\mathrm{n}=5$
d. $n=5$ to $n=4$
\qquad 119. Which variable is directly proportional to frequency?
a. wavelength
c. position
b. velocity
d. energy
\qquad 120. How do the energy differences between the higher energy levels of an atom compare with the energy differences between the lower energy levels of the atom?
a. They are greater in magnitude than those between lower energy levels.
b. They are smaller in magnitude than those between lower energy levels.
c. There is no significant difference in the magnitudes of these differences.
d. No answer can be determined from the information given.
\qquad 121. What are quanta of light called?
a. charms
c. muons
b. excitons
d. photons
\qquad 122. Which scientist developed the quantum mechanical model of the atom?
a. Albert Einstein
c. Niels Bohr
b. Erwin Schrodinger
d. Ernest Rutherford
\qquad 123. Bohr's model could only explain the spectra of which type of atoms?
a. single atoms with one electron
b. bonded atoms with one electron
c. single atoms with more than one electron
d. bonded atoms with more than one electron
\qquad 124. The quantum mechanical model of the atom \qquad .
a. defines the exact path of an electron around the nucleus
b. was proposed by Niels Bohr
c. involves the probability of finding an electron in a certain position
d. has many analogies in the visible world
\qquad 125. Who predicted that all matter can behave as waves as well as particles?
a. Albert Einstein
c. Max Planck
b. Erwin Schrodinger
d. Louis de Broglie
\qquad 126. According to the Heisenberg uncertainty principle, if the position of a moving particle is known, what other quantity CANNOT be known?
a. mass
c. spin
b. charge
d. velocity
\qquad 127. Which one of the following is has the longest wavelength?
a. visible light
b. radio waves
c. X-rays
d. microwaves
e. infrared radiation
\qquad 128. Which electron configuration denotes an atom in its ground state?
a.

b.

2s
c.

d.

e.

129. The ground state electron configuration of Ga is \qquad .
a. $\quad 1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 d^{10} 4 p^{1}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 d^{1}$
e. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{11}$
\qquad 130. The ground-state electron configuration of \qquad is $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{4}$.
a. V
b. Mn
c. Fe
d. Cr
e. K
\qquad 131. Which electron configuration represents a violation of Hund's rule for an atom in its ground state?
a.

b.

c.

c.
d.

\qquad 132. The noble gas electron configuration of argon, element 18 , is \qquad .
a. $[\mathrm{Ne}] 3 \mathrm{~s}^{4}$
b. $\quad[\mathrm{Ar}] 3 s^{2} 3 p^{2}$
c. $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
d. $[\mathrm{He}] 2 \mathrm{~s}^{4} 2 \mathrm{p}^{10}$
e. $[\mathrm{He}] 3 \mathrm{~s}^{4}$
\qquad 133. In the following diagram of a wave

a. (a) is amplitude and (b) is wavelength
b. (a) is frequency and (b) is amplitude
c. (a) is wavelength and (b) is frequency
d. (a) is wavelength and (b) is amplitude
134. Using the figure below, which radiation has the longest wavelength?

a. Gamma rays
b. X rays
c. Ultraviolet
d. Microwave
135. The orbital diagram for a ground-state nitrogen atom is

a. A
b. B
c. C
d. D

Short Answer

136. Give the electron configuration for a neutral atom of beryllium.
137. Give the electron configuration for a neutral atom of chlorine.
138. Give the electron configuration for a neutral atom of selenium.
139. Write the electron configuration for chromium.
140. What wavelengths correspond to the visible region of the electromagnetic spectrum?
141. A spectrum containing radiation of specific wavelengths is called a(n) \qquad .
142. Rank the following types of electromagnetic radiation from lowest energy to highest energy: infrared, microwave, radio waves, gamma rays, visible, and ultraviolet.
143. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors,
\qquad has the most energy.
144. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors,
\qquad has the longest wavelength.
145. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors,
\qquad has the shortest wavelength.

2015 Fall Midterm Practice Test

Answer Section

MATCHING

1. ANS: F OBJ: 2.1.3
2. ANS: A OBJ: 2.2.1
3. ANS: E OBJ: 2.2.2
4. ANS: B

OBJ: 2.4.1
5. ANS: D

OBJ: 2.4.1
6. ANS: B OBJ: 2.1.1
7. ANS: F OBJ: 2.2.2
8. ANS: E

OBJ: 2.3.1
9. ANS: D OBJ: 2.3.1
10. ANS: C OBJ: 2.4.1
11. ANS: C OBJ: 4.1.1|4.1.2
12. ANS: A OBJ: 4.2.1
13. ANS: D OBJ: 4.2.1
14. ANS: E OBJ: 4.2.1
15. ANS: B OBJ: 4.2.1|4.2.2
16. ANS: E OBJ: 4.3.1
17. ANS: A OBJ: 4.3.1
18. ANS: C OBJ: 4.3.1
19. ANS: D OBJ: 4.3.3

PTS: 1

PTS: 1
STA: Ch. 6
PTS: 1

PTS: 1
STA: Ch. 8
PTS: 1
STA: Ch. 8

PTS: 1

PTS: 1
STA: Ch. 6
PTS: 1

PTS: 1

PTS: 1

PTS: 1
STA: Ch. 1
PTS: 1
STA: Ch. 1 |Ch. 11
PTS: 1
STA: Ch. 1 |Ch. 11
PTS: 1 DIF: L1
STA: Ch. 1 |Ch. 11
PTS: 1 DIF: L1
STA: Ch. 1 |Ch. 11
PTS: 1
STA: Ch.11.c
PTS: 1
STA: Ch.1.e
PTS: 1
STA: Ch.1.a
PTS: 1
STA: Ch.1.a

DIF: L1

REF: p. 42
REF: p. 44

REF: p. 45

REF: p. 53

REF: p. 53

REF: p. 39

REF: p. 45

REF: p. 48

REF: p. 48

REF: p. 53

REF: p. 101 | p. 102
REF: p. 106

REF: p. 104

REF: p. 106
REF: p. 106 | p. 107

REF: p. 112

REF: p. 111
REF: p. 110

REF: p. 114
20. ANS: B

OBJ: 4.3.3
21. ANS: B

OBJ: 25.1.2
22. ANS: E

OBJ: 25.1.2
23. ANS: A

OBJ: 25.1.2
24. ANS: A OBJ: 5.1.2
25. ANS: F OBJ: 5.1.3
26. ANS: D OBJ: 5.1.3
27. ANS: B OBJ: 5.1.3|5.2.1
28. ANS: C OBJ: 5.2.1
29. ANS: E OBJ: 5.2.1
30. ANS: D OBJ: 5.1.3
31. ANS: E OBJ: 5.1.3
32. ANS: B OBJ: 5.3.1
33. ANS: C OBJ: 5.3.1
34. ANS: F OBJ: 5.3.1
35. ANS: A OBJ: 5.3.2

PTS: 1
DIF: L1

PTS: 1 DIF: L1
STA: Ch.11.d
PTS: 1
STA: Ch.11.d
PTS: 1
STA: Ch.11.d
PTS: 1
STA: Ch.1.e
PTS: 1
STA: Ch.1.e PTS: 1
STA: Ch.1.j
PTS: 1
STA: Ch.1.j
PTS: 1
STA: Ch.1.e
PTS: 1
STA: Ch.1.e
PTS: 1
STA: Ch.1.j

MULTIPLE CHOICE

36. ANS: B OBJ: 1.3.2
37. ANS: D OBJ: 1.3.2
38. ANS: B OBJ: 2.1.1
39. ANS: C OBJ: 2.1.1
40. ANS: D OBJ: 2.1.2

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
DIF: L1

REF: p. 23
REF: p. 22
REF: p. 39
REF: p. 39
REF: p. 40
41. ANS: C

OBJ: 2.1.3
42. ANS: C OBJ: 2.1.4
43. ANS: B OBJ: 2.2.1
44. ANS: A OBJ: 2.2.2
45. ANS: D

OBJ: 2.2.3
46. ANS: D

OBJ: 2.3.2
47. ANS: C OBJ: 2.3.3
48. ANS: C OBJ: 2.4.1
49. ANS: C OBJ: 2.4.1
50. ANS: C OBJ: 2.4.1
51. ANS: D OBJ: 2.4.1
52. ANS: A OBJ: 2.1.4|2.4.1|2.4.2
53. ANS: A
OBJ: 2.1.4 |2.4.2
54. ANS: C OBJ: 4.1.1
55. ANS: A OBJ: 4.1.1|4.1.2
56. ANS: C OBJ: 4.1.2
57. ANS: D

OBJ: 4.2.1
58. ANS: D

OBJ: 4.2.1
59. ANS: C

OBJ: 4.2.1
60. ANS: C

OBJ: 4.2.2
61. ANS: A

OBJ: 4.2.2
62. ANS: D

OBJ: 4.3.1
63. ANS: B

OBJ: 4.3.1
64. ANS: D

OBJ: 4.3.1

PTS: 1 DIF: L1
PTS: 1 DIF: L2
PTS: 1 DIF: L2
STA: Ch. 6
PTS: 1
STA: Ch. 6
PTS: 1
DIF: L2
DIF: L3
DIF: L1
DIF: L2
DIF: L1
DIF: L2
DIF: L2
STA: Ch.1.h
PTS: 1
STA: Ch.1.a
PTS: 1
STA: Ch. 1
PTS: 1
STA: Ch.1.h
PTS: 1
STA: Ch.1.e
PTS: 1
STA: Ch.1.a
PTS: 1
STA: Ch.1.a|Ch.11.c
PTS: 1 DIF: L1
STA: Ch.11.c

REF: p. 42
REF: p. 42
REF: p. 40
REF: p. 45
REF: p. 46
REF: p. 50 | p. 51
REF: p. 51
REF: p. 53
REF: p. 53
REF: p. 53
REF: p. 53
REF: p. 54
REF: p. 54
REF: p. 101
REF: p. 101 | p. 102
REF: p. 102
REF: p. 105
REF: p. 104 | p. 105 | p. 106
REF: p. 106
REF: p. 108
REF: p. 107 | p. 108
REF: p. 110
REF: p. 111
REF: p. 112 | p. 113

65.	$\begin{aligned} & \text { ANS: A } \\ & \text { OBJ: } 4.2 .1 \mid 4.3 .1 \end{aligned}$	PTS: STA:	$\begin{aligned} & 1 \\ & \text { Ch.1.a } \end{aligned}$	DIF:	L2	REF:	p. 110	
66.	ANS: B OBJ: 4.3.1\|4.3.4	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.1.a } \end{aligned}$	DIF:	L2	REF:	p. 111	
67.	ANS: D OBJ: 4.3.3	PTS:	1	DIF:	L1	REF:	p. 114	
68.	ANS: B OBJ: 4.3.3	PTS: STA:	$\begin{aligned} & 1 \\ & \text { Ch.1.a } \end{aligned}$	DIF:	L2	REF:	p. 114	
69.	ANS: C OBJ: 9.1.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.1.c \| Ch.1.d } \end{aligned}$	DIF:	L1	REF:	p. 254	
70.	ANS: C OBJ: 9.1.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 3 \end{aligned}$	DIF:	L1	REF:	p. 254	
71.	ANS: C OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L1	REF:	p. 262 \| p. 263	
72.	ANS: B OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 262	
73.	ANS: A OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 262	
74.	ANS: A OBJ: 9.2.1	PTS: STA:	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 262 \| p. 263	
75.	ANS: C OBJ: 9.2.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 261 \| p. 262	
76.	ANS: C OBJ: 9.2.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 257 \| p. 261	p. 262
77.	ANS: B OBJ: 9.1.3\|9.2.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L2	REF:	p. 264 \| p. 265	p. 266
78.	ANS: C OBJ: 9.3.1\|9.3.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.2.a } \end{aligned}$	DIF:	L1	REF:	p. 268	
79.	ANS: D OBJ: 9.3.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 2 \end{aligned}$	DIF:	L3	REF:	p. 268 \| p. 269	
80.	ANS: C OBJ: 9.4.1	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 272	
81.	ANS: D OBJ: 9.4.1	PTS: STA:	$\begin{aligned} & 1 \\ & \text { Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 272	
82.	ANS: B OBJ: 9.4.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 272	
83.	ANS: D OBJ: 9.2.1\|9.5.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 261 \| p. 262	p. 277
84.	ANS: C OBJ: 9.2.2\| 9.5.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch. } 5 \end{aligned}$	DIF:	L3	REF:	p. 257 \| p. 264	
85.	ANS: B OBJ: 9.3.2\|9.5.3	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.2.b \| Ch. } 5 \end{aligned}$	DIF:	L2	REF:	p. 269 \| p. 277	
86.	ANS: C OBJ: 25.1.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.11.d } \end{aligned}$	DIF:	L1	REF:	p. 800	
87.	ANS: B OBJ: 25.1.2	PTS: STA:	$\begin{aligned} & 1 \\ & \text { Ch.11.d } \end{aligned}$	DIF:	L1	REF:	p. 801	
88.	ANS: C OBJ: 25.1.2	$\begin{aligned} & \text { PTS: } \\ & \text { STA: } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { Ch.11.e } \end{aligned}$	DIF:	L1	REF:	p. 802	

89. ANS: D

OBJ: 25.1.2
90. ANS: B

OBJ: 25.1.2
91. ANS: B

OBJ: 25.1.2
92. ANS: C

OBJ: 25.1.2
93. ANS: D PTS: 1

OBJ: 25.1.2|25.2.1
94. ANS: C PTS: 1

OBJ: 25.2.1 STA: Ch.11.d
95. ANS: D

OBJ: 25.3.3
96. ANS: A

OBJ: 25.3.3
97. ANS: C

OBJ: 25.3.3
98. ANS: A

OBJ: 5.1.2
99. ANS: C

OBJ: 5.1.3
100. ANS: B

OBJ: 5.1.3
101. ANS: D

OBJ: 5.1.3
102. ANS: B

OBJ: 5.1.3
103. ANS: C

OBJ: 5.1.3
104. ANS: C

OBJ: 5.2.1
105. ANS: C

OBJ: 5.2.1
106. ANS: D

OBJ: 5.2.1
107. ANS: A

OBJ: 5.2.1
108. ANS: C

OBJ: 5.2.1
109. ANS: A

OBJ: 5.2.1
110. ANS: C

OBJ: 5.3.1
111. ANS: D

OBJ: 5.3.1
112. ANS: D

OBJ: 5.3.1

PTS: 1
STA: Ch.11.e
PTS: 1
STA: Ch.11.d
PTS: 1 DIF: L2
STA: Ch.11.d
PTS: 1
STA: Ch.11.e

PTS: 1
STA: Ch.11.b
PTS: 1

PTS: 1
STA: Ch.11.b
PTS: 1
STA: Ch.1.i
PTS: 1
STA: Ch.1.g
PTS: 1
STA: Ch.1.g|Ch.1.i
PTS: 1 DI
STA: Ch.1.g
PTS: 1
STA: Ch.1.g
PTS: 1
STA: Ch.11.e
PTS: 1
STA: Ch.1.j
PTS: 1
STA: Ch.1.j

DIF: L2

DIF: L2

DIF: L2

DIF: L2
STA: Ch.11.d
DIF: L3

DIF: L1

DIF: L1

DIF: L1

DIF: L2

DIF: L2

DIF: L2

DIF: L2

DIF: L3

DIF: L3

DIF: L1

DIF: L2

DIF: L2

DIF: L3

DIF: L3

DIF: L3

DIF: L2

DIF: L2

DIF: L2

REF: p. 800

REF: p. 801
REF: p. 801
REF: p. 802
REF: p. 800 | p. 804

REF: p. 803 | p. 804
REF: p. 813
REF: p. 813

REF: p. 810

REF: p. 128

REF: p. 131

REF: p. 131

REF: p. 131 | p. 132
REF: p. 132
REF: p. 128

REF: p. 134

REF: p. 131
REF: p. 133 | p. 134 | p. 135
REF: p. 134

REF: p. 133 | p. 134

REF: p. 133 | p. 134
REF: p. 139
REF: p. 139

REF: p. 139

113.	ANS: D OBJ: 5.3.1	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.j } \end{aligned}$	DIF:	L2	REF:	p. 139
114.	ANS: A OBJ: 5.3.1	PTS: 1 STA: Ch.1.j	DIF:	L2	REF:	p. 139
115.	ANS: A OBJ: 5.3.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.j } \end{aligned}$	DIF:	L2	REF:	p. 141
116.	ANS: A OBJ: 5.3.2	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.j } \end{aligned}$	DIF:	L2	REF:	p. 142 \| p. 143
117.	ANS: A OBJ: 5.3.2\|5.3.3	PTS: 1 STA: Ch.1.j	DIF:	L2	REF:	p. 141
118.	$\begin{array}{l:l} \text { ANS: } & \text { A } \\ \text { OBJ: } & 5.3 .3 \end{array}$	$\begin{array}{ll} \text { PTS: } \\ \text { STA: Ch.1.j } \end{array}$	DIF:	L2	REF:	p. 143
119.	ANS: D OBJ: 5.3.3	PTS: 1 STA: Ch.1.j	DIF:	L3	REF:	p. 142
120.	ANS: B OBJ: 5.3.3	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.j } \end{aligned}$	DIF:	L3	REF:	p. 143
121.	$\begin{array}{ll} \text { ANS: } & \mathrm{D} \\ \text { OBJ: } & 5.3 .4 \end{array}$	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.j } \end{aligned}$	DIF:	L1	REF:	p. 144
122.	ANS: B OBJ: 5.3.4	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.i } \end{aligned}$	DIF:	L1	REF:	p. 130
123.	ANS: A OBJ: 5.3.3\|5.3.4	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.i } \end{aligned}$	DIF:	L2	REF:	p. 143
124.	ANS: C OBJ: 5.3.4	PTS: 1 STA: Ch.1.i	DIF:	L2	REF:	p. 145
125.	ANS: D OBJ: 5.3.4	$\begin{array}{ll} \text { PTS: } \\ \text { STA: Ch.1.i } \end{array}$	DIF:	L2	REF:	p. 144
126.	ANS: D OBJ: 5.3.4	$\begin{aligned} & \text { PTS: } 1 \\ & \text { STA: Ch.1.i } \end{aligned}$	DIF:	L2	REF:	p. 145
127.	ANS: B OBJ: 6.2; G2	PTS: 1	DIF:	1	REF:	Page Ref: 6.2
128.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: } 6.8 ; \text { G2 } \end{aligned}$	PTS: 1	DIF:	2	REF:	Page Ref: 6.8
129.	ANS: C OBJ: 6.8; G2	PTS: 1	DIF:	2	REF:	Page Ref: 6.8
130.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: 6.8; G2 } \end{aligned}$	PTS: 1	DIF:	2	REF:	Page Ref: 6.8
131.	ANS: B OBJ: 6.8; G2	PTS: 1	DIF:	2	REF:	Page Ref: 6.8
132.	ANS: C OBJ: 6.9; G2	PTS: 1	DIF:	2	REF:	Page Ref: 6.8
133.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: EK.1.D.3 } \end{aligned}$	PTS: 1	DIF:	Easy	REF:	Section: 7.1
134.	ANS: D OBJ: EK.1.D. 3	PTS: 1	DIF:	Medium	REF:	Section: 7.1
135.	ANS: A OBJ: EK.1.B. 2	PTS: 1	DIF:	Medium	REF:	Section: 7.8

SHORT ANSWER

136. ANS:
$1 s^{2} 2 s^{2}$
PTS: 1 DIF: L1 REF: p. 133|p. 134
OBJ: 5.2.1 STA: Ch.1.g
137. ANS:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
PTS: 1 DIF: L2 REF: p. 133|p. 134
OBJ: 5.2.1 STA: Ch.1.g
138. ANS:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4}$
PTS: 1 DIF: L2 REF: p. 133|p. 134
OBJ: 5.2.1 STA: Ch.1.g
139. ANS:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
PTS: 1 DIF: L3 REF: p. 134|p. 135|p. 136
OBJ: 5.2.2 STA: Ch.1.g
140. ANS:

About 400 to 750 nm .
PTS: 1 DIF: 1 REF: Page Ref: 6.1
OBJ: 6.1; G4
141. ANS:
line spectrum
PTS: 1 DIF: 2 REF: Page Ref: 6.3
OBJ: 6.3; G2
142. ANS:
radio waves < microwaves < infrared < visible < ultraviolet < gamma rays
PTS: 1 DIF: Medium REF: Section: 7.1 OBJ: EK.1.D. 3
143. ANS:
violet
PTS: 1 DIF: Easy REF: Section: 7.1 OBJ: EK.1.D.3
144. ANS:
red
PTS: 1 DIF: Easy REF: Section: 7.1 OBJ: EK.1.D. 3
145. ANS:
violet
PTS: 1
DIF: Easy
REF: Section: 7.1 OBJ: EK.1.D. 3

