2015 Fall Midterm Practice Test

Matching

You will need your own calculator for the midterm. Question about the midterm will not be answered on the midterm day. You need to start studying early.

Match each item with the correct statement below.

- a. mixture
- d. reactant
- heterogeneous mixture e.
- phase f. c. vapor
- 1. gaseous state of substance that is a liquid or solid at room temperature
- 2. a physical blend of two or more components
- 3. not uniform in composition

product

b.

- 4. a substance formed in a chemical reaction
 - 5. starting substance in a chemical reaction

Match each item with the correct statement below.

- a. distillation compound d.
- b. element mass e. f. homogeneous
- chemical reaction c.
- 6. amount of matter an object contains
 - 7. describes mixture with a uniform composition
- 8. substance that cannot be changed into simpler substances by chemical means
 - 9. composed of two or more substances chemically combined in a fixed proportion
- 10. process in which substances are changed into different substances

Match each item with the correct statement below.

- a. proton d. electron e. neutron
- b. nucleus
- atom C.
- 11. the smallest particle of an element that retains the properties of that element
- 12. a positively charged subatomic particle
- 13. a negatively charged subatomic particle
- 14. a subatomic particle with no charge
- 15. the central part of an atom, containing protons and neutrons

Match each item with the correct statement below.

- a. mass number d. atomic mass
- b. atomic mass unit e. isotope
- c. atomic number
- 16. atoms with the same number of protons, but different numbers of neutrons in the nucleus of an atom
- 17. the total number of protons and neutrons in the nucleus of an atom
- 18. the number of protons in the nucleus of an element
- 19. the weighted average of the masses of the isotopes of an element

20. one-twelfth the mass of a carbon atom having six protons and six neutrons

Match each item with the correct statement below.

- a. positron
- alpha particle b.
- beta particle c.
- 21. emitted helium nucleus
- 22. high-energy photons emitted by a radioisotope
- 23. particle of charge +1 and mass equal to that of an electron

Match each item with the correct statement below.

atomic orbital a.

- d.
- b. aufbau principle e.
- electron configuration f. c.
- 24. region of high probability of finding an electron
- 25. states the impossibility of knowing both velocity and position of a moving particle at the same time
- 26. lowest energy level
- 27. tendency of electrons to enter orbitals of lowest energy first
- 28. arrangement of electrons around atomic nucleus
- 29. each orbital has at most two electrons

Match each item with the correct statement below.

a.	atomic emission spectrum	d.	photon
b.	frequency	e.	quantum
c.	wavelength	f.	spectrum

- 30. discrete bundle of electromagnetic energy
- 31. energy needed to move an electron from one energy level to another
- 32. number of wave cycles passing a point per unit of time
- 33. distance between wave crests
- 34. separation of light into different wavelengths
- 35. frequencies of light emitted by an element

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 36. A theory is a ____
 - a. proposed explanation for an observation
 - b. well-tested explanation for a broad set of observations
 - c. summary of the results of many observations
 - procedure used to test a proposed explanation d.
- 37. The variable that is observed during an experiment is called what type of variable?
 - independent a. с. controlling
 - b. manipulated d. responding
- 38. Which of the following is NOT an example of matter?
 - a. air c. smoke
 - b. heat water vapor d.

- ground state
- Pauli exclusion principle

transuranium element

gamma radiation

transmutation

e.

f.

Heisenberg uncertainty principle

39.	. An example of an extensive property of matte	er is _	·
	a. temperature	c.	mass
	b. pressure	d.	hardness
40.	*	fmatt	
	a. mass	с.	melting point
	b. color	d.	ability to rust
41.	. A vapor is which state of matter?		
	a. solid	c.	gas
	b. liquid	d.	all of the above
42.	. Which of the following is a physical change?		
	a. corrosion	c.	evaporation
	b. explosion	d.	rotting of food
43.	6	ed as a	
	a. table salt	c.	nitrogen
	b. air	d.	gold
44.	6 6		
	a. salt water	с.	sand and water
	b. beef stew	d.	soil
45.		-	-
	a. filtrationb. condensation	с. d.	solution distillation
16			distillation
46.			ot
	a. Substances are compounds, and mixturesb. Mixtures are groupings of elements, and		
	c. Samples of the same substance can have	_	
	d. Mixtures can be separated physically, wh		
47.			•
	a. H	c.	H ₂ O
	b. <i>H-3</i>	d.	O-16
48.	. Which of the following is NOT a physical cha	ange?	
	a. grating cheese	с.	fermenting of cheese
	b. melting cheese	d.	mixing two cheeses in a bowl
49.	. Which of the following processes does NOT i	involv	ve a change in chemical properties?
	a. rusting	c.	boiling
	b. fermenting	d.	burning
50.	E I	_ boc	
	a. is split	с.	decays
_	b. is painted	d.	is cut
51.	0 113	of w	ater at 4°C?
	a. its color		
	b. its statec. its temperature		
	d its ability to decompose into hydrogen an	nd oxy	/gen

d. its ability to decompose into hydrogen and oxygen

Name:

52. Which of the following indicates that a chemical change has happened during cooking? a. The food darkens. b. Bubbles form in boiling water. c. Butter melts. d. Energy is transferred from the stove to a pan. 53. Which of the following does NOT indicate that a chemical change may have taken place? a. fracture formation c. precipitate formation energy transfer b. gas production d. Who was the man who lived from 460B.C.–370B.C. and was among the first to suggest the idea of atoms? 54. Atomos c. Democritus a Dalton Thomson b. d. The smallest particle of an element that retains the properties of that element is a(n) . 55. a. atom proton с. b. electron d. neutron 56. Dalton's atomic theory included which idea? All atoms of all elements are the same size. a. b. Atoms of different elements always combine in one-to-one ratios. c. Atoms of the same element are always identical. d. Individual atoms can be seen with a microscope. 57. Why did J. J. Thomson reason that electrons must be a part of the atoms of all elements? Cathode rays are negatively-charged particles. a. Cathode rays can be deflected by magnets. b. An electron is 2000 times lighter than a hydrogen atom. c. d. Charge-to-mass ratio of electrons was the same, regardless of the gas used. 58. Which of the following is true about subatomic particles? Electrons are negatively charged and are the heaviest subatomic particle. a. Protons are positively charged and the lightest subatomic particle. b. c. Neutrons have no charge and are the lightest subatomic particle. The mass of a neutron nearly equals the mass of a proton. d. All atoms are 59. positively charged, with the number of protons exceeding the number of electrons a. negatively charged, with the number of electrons exceeding the number of protons b. neutral, with the number of protons equaling the number of electrons c. neutral, with the number of protons equaling the number of electrons, which is equal to d. the number of neutrons 60. As a consequence of the discovery of the nucleus by Rutherford, which model of the atom is thought to be true? a. Protons, electrons, and neutrons are evenly distributed throughout the volume of the atom. b. The nucleus is made of protons, electrons, and neutrons. Electrons are distributed around the nucleus and occupy almost all the volume of the c. atom. The nucleus is made of electrons and protons. d. The nucleus of an atom is 61. the central core and is composed of protons and neutrons a. b. positively charged and has more protons than neutrons negatively charged and has a high density c. negatively charged and has a low density d. 4

 62.	An element has an atomic number of 76. The r element are	numb	er of protons and electrons in a neutral atom of the
	a. 152 protons and 76 electrons	c.	38 protons and 38 electrons
	b. 76 protons and 0 electrons	d.	76 protons and 76 electrons
 63.	What does the number 84 in the name krypton	-84 r	epresent?
	a. the atomic number	c.	1
	b. the mass number	d.	twice the number of protons
 64.	Isotopes of the same element have different	<u> </u>	
	a. positions on the periodic table	c.	atomic numbers
	b. chemical behavior	d.	mass numbers
 65.	electrons given correctly?		element, the number of protons, and the number of
	a. In, 49 protons, 49 electrons		Cs, 55 protons, 132.9 electrons
	b. Zn, 30 protons, 60 electrons	d.	F, 19 protons, 19 electrons
66.	Using the periodic table, determine the number	r of n	neutrons in ¹⁶ O.
	a. 4	c.	16
	b. 8	d.	24
 67.	Which of the following equals one atomic mas	s uni	t?
	a. the mass of one electron		
	b. the mass of one helium-4 atom		
	c. the mass of one carbon-12 atom		
C 0	d. one-twelfth the mass of one carbon-12 ato		
 68.	Which of the following statements is NOT true a. Protons have a positive charge.	2?	
	a. Protons have a positive charge.b. Electrons are negatively charged and have	e a m	ass of 1 amu
	c. The nucleus of an atom is positively charge		
	d. Neutrons are located in the nucleus of an a	-	
 69.	When Group 2A elements form ions, they		
	a. lose two protons	c.	lose two electrons
	b. gain two protons	d.	gain two electrons
70.	What is the correct name for the N^{3-} ion?		
 /01	a. nitrate ion	c.	nitride ion
	b. nitrogen ion	d.	nitrite ion
71	Which of the following compounds contains the	ne Mi	n^{3+} ion?
 / 1.	a. MnS	с.	Mn_2O_3
	b. MnBr ₂	d.	MnO
	2		
 72.	Which of the following formulas represents an		-
	a. CS_2	c.	N_2O_4
	b. BaI ₂	d.	PCl ₃
 73.	Which of the following correctly represents an	ion	pair and the ionic compound the ions form?
	a. $Ca^{2-}, F^{-}; CaF_{2}$	c.	$Ba^{2+}, O^{2-}; Ba_2O_2$
	b. Na ⁺ , Cl ⁻ ; NaCl ₂	d.	$Pb^{4+}, O^{2-}; Pb_2O_4$

 74.	Which of the following compounds contains th	e lea	
	a. PbO	с.	Pb ₂ O
75	b. PbCl ₄	d.	Pb ₂ S
 75.	Which set of chemical name and chemical form a. iron(II) oxide, Fe_2O_3	nula : c.	for the same compound is correct? tin(IV) bromide, SnBr_4
	b. aluminum fluorate, AIF_3	d.	potassium chloride, K_2Cl_2
76.	What is the correct formula for potassium sulfi	te?	
	a. KHSO ₃	c.	K ₂ SO ₃
	b. KHSO ₄	d.	K_2SO_4
 77.	Which set of chemical name and chemical form	nula	for the same compound is correct?
	a. ammonium sulfite, $(NH_4)_2S$	c.	lithium carbonate, LiCO ₃
	b. iron(III) phosphate, $FePO_4$	d.	magnesium dichromate, MgCrO ₄
 78.	 Molecular compounds are usually a. composed of two or more transition eleme b. composed of positive and negative ions c. composed of two or more nonmetallic elements 		S
	d. exceptions to the law of definite proportion	ns	
 79.	Consider a mystery compound having the form	ula N	$M_x T_y$. If the compound is not an acid, if it contains only
 80.	two elements, and if M is not a metal, which ofa. It contains a polyatomic ion.b. Its name ends in <i>-ite</i> or <i>-ate</i>.Which of the following shows both the correct	c. d.	Its name ends in <i>-ic</i> . It is a binary molecular compound.
	a. $HClO_2$, chloric acid	c.	H_3PO_4 , phosphoric acid
	b. HNO ₂ , hydronitrous acid	d.	HI, iodic acid
 81.	What is the name of H_2SO_3 ?		
	a. hyposulfuric acid	с.	sulfuric acid
82.	b. hydrosulfuric acid What is the formula for phosphoric acid?	d.	sulfurous acid
 02.	a. H_2PO_3	c.	HPO ₂
	b. H_3PO_4	d.	HPO ₄
 83.	What is the correct name for the compound Co	$Cl_2?$	
	a. cobalt(I) chlorate	c.	cobalt(II) chlorate
	b. cobalt(I) chloride	d.	cobalt(II) chloride
 84.	What is the correct formula for calcium dihydra. CaH_2PO_4	ogen c.	phosphate? $Ca(H_2PO_4)_2$
	b. $Ca_2H_2PO_4$	d.	$Ca(H_2HPO_4)_2$
85.	Which of the following is the correct name for		
 	a. nitrous oxide	c.	nitrogen dioxide
	b. dinitrogen pentoxide	d.	nitrate oxide
 86.	What particle is emitted in alpha radiation?		
	a. electronb. photon	c. d.	helium nucleus hydrogen nucleus
	c. photon	ч.	, <u></u>

 87.	A beta particle is a(n)		
	a. photon	c.	helium nucleus
	b. electron	d.	hydrogen nucleus
 88.	The least penetrating form of radiation is	<u>.</u> .	
	a. beta radiation	c.	alpha radiation
	b. gamma radiation	d.	X rays
 89.	e ,		
	a. three feet of concrete	c.	
	b. three inches of lead	d.	single sheet of paper
 90.	What particle decomposes to produce the elec		
	a. proton	с. а	electron
0.1	b. neutron	d.	positron
 91.	What symbol is used for beta radiation?		1
	a. ${}^{0}_{0}e$	c.	$^{-1}_{0}e$
	b. ${}^{0}_{-1}e$	d.	$^{-1}_{-1}e$
02	-		•
 92.	Which of the following materials is necessary a. three feet of concrete	c.	
	b. three inches of lead	с. d.	single sheet of paper
93.	When radium-226 (atomic number 88) decays		
 15.	a. polonium-222 (atomic number 66) decays	c.	radium-222
	b. polonium-224	d.	radon-222
94.	What particle is needed to complete the follow		
 2			
			57
	a. $\frac{56}{27}$ Co		⁵⁶ ₂₆ Fe
	b. $\frac{27}{25}$ Mn	d.	$^{58}_{24}$ Cr
95.	A reaction in which small nuclei combine to fe		
 <i>))</i> .	a. fission	с.	background radiation
	b. a chemical reaction	d.	fusion
96.	Nuclear fusion		
 201	a. takes place in the sun	c.	can be controlled in the laboratory
	b. occurs at low temperatures	d.	
 97.	A reaction that results in the combining of small	aller	atomic nuclei is
	a. chemical	c.	fusion
	b. fission	d.	ionization
 98.	In Bohr's model of the atom, where are the ele	ctron	as and protons located?
	a. The electrons move around the protons, w		
	b. The electrons and protons move througho		
	c. The electrons occupy fixed positions arou	ind th	he protons, which are at the center of the
	atom.		but the store but they are not free to make
00	-	-	but the atom, but they are not free to move.
 99.	The principal quantum number indicates what a. position		erty of an electron? energy level
	a. position b. speed	с. d.	electron cloud shape
	o. speca	u.	election cloud shape

100	How many energy sublevels are in the	second principal energy level?
100.	a. 1	c. 3
	b. 2	d. 4
101.	What is the maximum number of <i>f</i> orbit	tals in any single energy level in an atom?
	a. 1	c. 5
	b. 3	d. 7
102.	What is the maximum number of electr	ons in the second principal energy level?
	a. 2	c. 18
	b. 8	d. 32
103.		to a higher energy level, the electron
	a. always doubles its energyb. absorbs a continuously variable am	pount of energy
	c. absorbs a quantum of energy	lount of energy
	d. moves closer to the nucleus	
104.	If the spin of one electron in an orbital	is clockwise, what is the spin of the other electron in that orbital?
	a. zero	c. counterclockwise
	b. clockwise	d. both clockwise and counterclockwise
105.	What types of atomic orbitals are in the	
	a. <i>s</i> and <i>p</i> only	c. $s, p, and d only$
10.5	b. p and d only	d. <i>s</i> , <i>p</i> , <i>d</i> , and <i>f</i>
106.	What is the electron configuration of po	
	a. $1s^2 2s^2 2p^2 3s^2 3p^2 4s^1$	c. $1s^2 2s^2 3s^2 3p^6 3d^1$
	b. $1s^2 2s^2 2p^{10} 3s^2 3p^3$	d. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
107	If there all a there are are itally to fill the	
107.		ree empty $2p$ atomic orbitals, how will the electrons be distributed in
107.	the three orbitals?	ree empty $2p$ atomic orbitals, how will the electrons be distributed in
107.	the three orbitals? a. one electron in each orbital	
107.	the three orbitals?a. one electron in each orbitalb. two electrons in one orbital, one in	another, none in the third
107.	the three orbitals?a. one electron in each orbitalb. two electrons in one orbital, one in	another, none in the third her two
107.	the three orbitals?a. one electron in each orbitalb. two electrons in one orbital, one inc. three in one orbital, none in the other	a another, none in the third her two npty $2p$ atomic orbitals.
	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2
108.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3
108.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom?
108.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4
108.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light com 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light com in a vacuum? 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light contin a vacuum? 	a another, none in the third her two mpty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 mpare with the speed of gamma rays, when both speeds are measured r.
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light con in a vacuum? a. The speed of gamma rays is greate c. The speeds are the same. 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r.
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a se a. 0 b. 1 How many half-filled orbitals are in a be a. 1 b. 2 How does the speed of visible light contin a vacuum? a. The speed of visible light is greatered. b. The speeds are the same. d. No answer can be determined from 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. er.
108. 109.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light contin a vacuum? a. The speed of visible light is greater b. The speed of gamma rays is greate c. The speeds are the same. d. No answer can be determined from Which color of visible light has the shot 	a another, none in the third her two npty $2p$ atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. er.
108. 109. 110.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light con in a vacuum? a. The speed of visible light is greater b. The speed of gamma rays is greater c. The speeds are the same. d. No answer can be determined from Which color of visible light has the sho a. yellow 	a another, none in the third her two npty 2p atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. r. r. r. c. blue
108. 109. 110. 111.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light contin a vacuum? a. The speed of visible light is greater b. The speed of gamma rays is greater c. The speeds are the same. d. No answer can be determined from Which color of visible light has the shota. a. yellow b. green 	a another, none in the third her two npty 2p atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. r. r. r. h the information given. prtest wavelength? c. blue d. violet
108. 109. 110.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light contin a vacuum? a. The speed of visible light is greater c. The speed of gamma rays is greater c. The speed of visible light has the shota. d. No answer can be determined from Which color of visible light has the shota. yellow b. green 	a another, none in the third her two npty 2p atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 oromine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. r. r. r. r. r. c. blue d. violet c waves have the highest frequencies?
108. 109. 110. 111.	 the three orbitals? a. one electron in each orbital b. two electrons in one orbital, one in c. three in one orbital, none in the oth d. Three electrons cannot fill three en How many unpaired electrons are in a s a. 0 b. 1 How many half-filled orbitals are in a b a. 1 b. 2 How does the speed of visible light contin a vacuum? a. The speed of visible light is greater b. The speed of gamma rays is greater c. The speeds are the same. d. No answer can be determined from Which color of visible light has the shota. a. yellow b. green 	a another, none in the third her two npty 2p atomic orbitals. sulfur atom (atomic number 16)? c. 2 d. 3 promine atom? c. 3 d. 4 npare with the speed of gamma rays, when both speeds are measured r. r. r. r. h the information given. prtest wavelength? c. blue d. violet

 113.	Which type of electromagnetic radiation includes	s th	e wavelength 10^{-7} m?
	a. gamma ray	с.	radio wave
	b. microwave	d.	visible light
114.	How are the frequency and wavelength of light r	elat	ed?
	a. They are inversely proportional to each othe		
	b. Frequency equals wavelength divided by the		eed of light.
	c. Wavelength is determined by dividing frequ	_	÷
	d. They are directly proportional to each other.		
115.	Emission of light from an atom occurs when an e	elec	tron .
 	a. drops from a higher to a lower energy level		
	b. jumps from a lower to a higher energy level		
	c. moves within its atomic orbital		
	d. falls into the nucleus		
 116.	As changes in energy levels of electrons increase	e, th	e frequencies of atomic line spectra they emit
	a. increase	с.	remain the same
	b. decrease d	d.	cannot be determined
 117.	The atomic emission spectra of a sodium atom of	n E	arth and of a sodium atom in the sun would be
	a. the same		
	b. different from each other		
	c. the same as those of several other elements		
	d. the same as each other only in the ultraviole	t ra	nge
 118.	Which of the following quantum leaps would be	ass	ociated with the greatest energy of emitted light?
		с.	n = 2 to $n = 5$
	b. $n = 4$ to $n = 5$	d.	n = 5 to $n = 4$
 119.	Which variable is directly proportional to frequen	ncy	?
	6	с.	position
	b. velocity	d.	energy
 120.	How do the energy differences between the high		••• •• ••
	differences between the lower energy levels of the		
	a. They are greater in magnitude than those be		
	b. They are smaller in magnitude than those be		
	c. There is no significant difference in the mag	-	
	d. No answer can be determined from the infor	rma	tion given.
 121.	What are quanta of light called?		
		C.	muons
		d.	photons
 122.	Which scientist developed the quantum mechanic		
		с.	Niels Bohr
	6	d.	Ernest Rutherford
 123.	Bohr's model could only explain the spectra of w	vhic	h type of atoms?
	a. single atoms with one electron		
	b. bonded atoms with one electron		
	c. single atoms with more than one electron		
	d. bonded atoms with more than one electron		

defines the exact path of an electron around the nucleus a. was proposed by Niels Bohr b. involves the probability of finding an electron in a certain position c. has many analogies in the visible world d. 125. Who predicted that all matter can behave as waves as well as particles? Albert Einstein Max Planck a. c. b. Erwin Schrodinger d. Louis de Broglie _ 126. According to the Heisenberg uncertainty principle, if the position of a moving particle is known, what other quantity CANNOT be known? a. mass c. spin b. charge d. velocity _ 127. Which one of the following is has the longest wavelength? visible light a. radio waves b. X-rays c. d. microwaves infrared radiation e. 128. Which electron configuration denotes an atom in its ground state? 2s2p 1sſ a. 2s 2p 1sb. 2s2p 1sî↓ ↓ c. 2s2p 1s↑ ↑ 1 d. 2s1s2p 1 ↑ 1 ↑ e. 129. The ground state electron configuration of Ga is _____. 1s²2s²3s²3p⁶4s²3d¹⁰4p¹ a. 1s²2s²2p⁶3s²3p⁶4s²4d¹⁰4p¹ b. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p¹ c. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4d¹ d.

_ 124. The quantum mechanical model of the atom _____.

e. $[Ar]4s^23d^{11}$

Name: _

- <u>130.</u> The ground-state electron configuration of <u>is [Ar]4s²3d⁴</u>.
 - a. V
 - b. Mn
 - c. Fe
 - d. Cr
 - e. K
 - _____131. Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

- ____ 132. The noble gas electron configuration of argon, element 18, is _____.
 - a. [Ne]3s⁴
 - b. [Ar]3s²3p²
 - c. $[Ne]3s^23p^6$
 - d. [He] $2s^42p^{10}$
 - e. [He]3s⁴

_____ 133. In the following diagram of a wave

- a. (a) is amplitude and (b) is wavelength
- b. (a) is frequency and (b) is amplitude
- c. (a) is wavelength and (b) is frequency
- d. (a) is wavelength and (b) is amplitude

____ 134. Using the figure below, which radiation has the longest wavelength?

	Wavelength (nm)	10 ⁻³	10 ⁻¹	10 I	10	β	10 ⁵	107	10 ⁹	10 ¹¹	10 ¹³
	Frequency (Hz)	10 ²⁰	10 ¹⁸	10 ¹⁶	10	14	10 ¹²	10 ¹⁰	10 ⁸	10 ⁶	10 ⁴
		amma rays	X rays	Ultra- violet	Visible	Infrared		Microwave	1	Radio waves	
a. b.	Gamma ra X rays										

- d. Microwave
- _____135. The orbital diagram for a ground-state nitrogen atom is

b. B

a. A

- c. C
- d. D

Short Answer

- 136. Give the electron configuration for a neutral atom of beryllium.
- 137. Give the electron configuration for a neutral atom of chlorine.
- 138. Give the electron configuration for a neutral atom of selenium.
- 139. Write the electron configuration for chromium.
- 140. What wavelengths correspond to the visible region of the electromagnetic spectrum?
- 141. A spectrum containing radiation of specific wavelengths is called a(n) ______
- 142. Rank the following types of electromagnetic radiation from lowest energy to highest energy: infrared, microwave, radio waves, gamma rays, visible, and ultraviolet.
- 143. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors, _____ has the most energy.
- 144. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors, _____ has the longest wavelength.
- 145. The colors of the visible spectrum are blue, green, orange, red, violet, and yellow. Of these colors, ______ has the shortest wavelength.

2015 Fall Midterm Practice Test Answer Section

MATCHING

1.		F 2.1.3	PTS:	1	DIF:	L1	REF:	p. 42
2.	ANS:		PTS: STA:		DIF:	L1	REF:	p. 44
3.	ANS: OBJ:		PTS:		DIF:	L1	REF:	p. 45
4.		B 2.4.1		1 Ch.8	DIF:	L1	REF:	p. 53
5.		D 2.4.1	PTS: STA:		DIF:	L1	REF:	p. 53
6.	ANS: OBJ:		PTS:	1	DIF:	L1	REF:	p. 39
7.	ANS:		PTS: STA:	1 Ch.6	DIF:	L1	REF:	p. 45
8.	ANS: OBJ:	Е	PTS:		DIF:	L1	REF:	p. 48
9.	ANS: OBJ:	D	PTS:	1	DIF:	L1	REF:	p. 48
10.		С	PTS:	1	DIF:	L1	REF:	p. 53
11.		C 4.1.1 4.1.2			DIF:	L1	REF:	p. 101 p. 102
12.	ANS:	A 4.2.1	PTS:	1	DIF:	L1	REF:	p. 106
13.	ANS:	D 4.2.1	PTS:	1 Ch.1 Ch.11	DIF:	L1	REF:	p. 104
14.	ANS:	E 4.2.1	PTS:	1	DIF:	L1	REF:	p. 106
15.	ANS:	B 4.2.1 4.2.2	PTS:	1	DIF:	L1	REF:	p. 106 p. 107
16.	ANS: OBJ:			1 Ch.11.c	DIF:	L1	REF:	p. 112
17.	ANS: OBJ:	А	PTS:		DIF:	L1	REF:	p. 111
18.	ANS: OBJ:	С	PTS:		DIF:	L1	REF:	p. 110
19.	ANS:		PTS:		DIF:	L1	REF:	p. 114

20.		B 4.3.3	PTS:	1	DIF:	L1	REF:	p. 114
21.		B 25.1.2		1 Ch.11.d	DIF:	L1	REF:	p. 800
22.		E 25.1.2	PTS: STA:	1 Ch.11.d	DIF:	L1	REF:	p. 802
23.		A 25.1.2	PTS: STA:	1 Ch.11.d	DIF:	L1	REF:	p. 804
24.	ANS: OBJ:	A 5.1.2	PTS: STA:	1 Ch.1.e	DIF:	L1	REF:	p. 130 p. 131
25.	ANS:	F 5.1.3	PTS:	1 Ch.1.e	DIF:	L1	REF:	p. 145
26.	ANS: OBJ:	D 5.1.3	PTS: STA:	1 Ch.1.j	DIF:	L1	REF:	p. 142
27.	ANS: OBJ:	B 5.1.3 5.2.1	PTS: STA:	1 Ch.1.j	DIF:	L1	REF:	p. 133
	OBJ:	C 5.2.1		Ch.1.e	DIF:			p. 133
29.	ANS: OBJ:	E 5.2.1		1 Ch.1.e	DIF:	L1	REF:	p. 134
30.		D 5.1.3		1 Ch.1.j	DIF:	L1	REF:	p. 128
31.	ANS:		PTS:	•	DIF:	L1	REF:	p. 128
32.	ANS:		PTS:	•	DIF:	L1	REF:	p. 138
33.	ANS: OBJ:	C 5.3.1	PTS: STA:	1 Ch.1.j	DIF:	L1	REF:	p. 138
	OBJ:			Ch.1.j	DIF:	L1	REF:	p. 139
35.		A 5.3.2		1 Ch.1.j	DIF:	L1	REF:	p. 141
MULTIPLE CHOICE								
36.	ANS: OBJ:		PTS:	1	DIF:	L1	REF:	p. 23
37.	ANS: OBJ:	D	PTS:	1	DIF:	L2	REF:	p. 22
38.	ANS: OBJ:		PTS:	1	DIF:	L1	REF:	p. 39
	ANS: OBJ:	2.1.1	PTS:		DIF:		REF:	-
40.	ANS: OBJ:		PTS:	1	DIF:	L1	REF:	p. 40

41.			PTS:	1	DIF:	L1	REF:	p. 42
42.	OBJ: ANS:	С	PTS:	1	DIF:	L2	REF:	p. 42
43.	OBJ: ANS:	В	PTS:		DIF:	L2	REF:	p. 40
44.	OBJ: ANS:	А	STA: PTS:	1	DIF:	L2	REF:	p. 45
45.	OBJ: ANS:	D	STA: PTS:		DIF:	L2	REF:	p. 46
46.	OBJ: ANS:	D	PTS:	1	DIF:	L3	REF:	p. 50 p. 51
47.	OBJ: ANS: OBJ:	С	PTS:	1	DIF:	L1	REF:	p. 51
48.	ANS: OBJ:	С	PTS:	1	DIF:	L2	REF:	p. 53
49.	ANS: OBJ:	С	PTS:	1	DIF:	L2	REF:	p. 53
50.	ANS: OBJ:	С	PTS:	1	DIF:	L2	REF:	p. 53
51.	ANS: OBJ:	D	PTS:	1	DIF:	L2	REF:	p. 53
52.	ANS:		PTS: 2.4.2	1	DIF:	L2	REF:	p. 54
53.	ANS:	A 2.1.4 2.4.2		1	DIF:	L2	REF:	p. 54
54.		С	PTS:	1	DIF:	L2	REF:	p. 101
55.	ANS: OBJ:	A 4.1.1 4.1.2	PTS:	1	DIF:	L1	REF:	p. 101 p. 102
56.	ANS: OBJ:		PTS:	1	DIF:	L2	REF:	p. 102
57.	ANS: OBJ:		PTS: STA:	1 Ch.1.h	DIF:	L2	REF:	p. 105
58.	OBJ:	4.2.1		Ch.1.a	DIF:			p. 104 p. 105 p. 106
	ANS: OBJ:	4.2.1	PTS: STA:	Ch.1	DIF:			p. 106
	ANS: OBJ:	4.2.2		Ch.1.h	DIF:			p. 108
	ANS: OBJ:	4.2.2		Ch.1.e	DIF:			p. 107 p. 108
	ANS: OBJ:	4.3.1		Ch.1.a	DIF:			p. 110
	ANS: OBJ:	4.3.1		Ch.1.a Ch.11				p. 111
64.	ANS: OBJ:		PTS: STA:	l Ch.11.c	DIF:	LI	KEF:	p. 112 p. 113

65.				1	DIF:	L2	REF:	p. 110
66.	ANS:		PTS:	1	DIF:	L2	REF:	p. 111
67.	OBJ: ANS:	4.3.1 4.3.4 D	STA: PTS:		DIF:	L1	REF:	p. 114
	OBJ: ANS:	4.3.3	PTS:		DIF:			-
08.	OBJ:			Ch.1.a	DIF.	L2	ΚΕΓ.	p. 114
69.	ANS: OBJ:		PTS: STA:	1 Ch.1.c Ch.1.c	DIF: 1	L1	REF:	p. 254
70.	ANS: OBJ:			1	DIF:	L1	REF:	p. 254
71.	ANS:	С	PTS:	1	DIF:	L1	REF:	p. 262 p. 263
72.	OBJ: ANS:		STA: PTS:		DIF:	L2	REF:	p. 262
	OBJ:	9.2.1	STA:	Ch.2				
73.	ANS: OBJ:		PTS: STA:		DIF:	L2	REF:	p. 262
74.	ANS:		PTS:	1	DIF:	L2	REF:	p. 262 p. 263
75.	OBJ: ANS:		STA: PTS:		DIF:	L2	REF:	p. 261 p. 262
76	OBJ: ANS:		STA: PTS:		DIE	1.2	DEE.	n 257 n 261 n 262
70.	OBJ:		STA:		DIF:	L2	KEF.	p. 257 p. 261 p. 262
77.	ANS: OBJ:	B 9.1.3 9.2.2	PTS: STA:		DIF:	L2	REF:	p. 264 p. 265 p. 266
78.	ANS:	С	PTS:	1	DIF:	L1	REF:	p. 268
79.	ANS:	9.3.1 9.3.2 D	STA: PTS:	Ch.2.a 1	DIF:	L3	REF:	p. 268 p. 269
0.0		9.3.2	STA:		DIE	1.0	DEE	272
80.	ANS: OBJ:		PTS: STA:		DIF:	L2	REF:	p. 272
81.	ANS:	D	PTS:	1	DIF:	L2	REF:	p. 272
82.	OBJ: ANS:		STA: PTS:		DIF:	L2	REF:	p. 272
	OBJ:	9.4.2	STA:	Ch.5				•
83.	ANS:	D 9.2.1 9.5.2	PTS: STA:		DIF:	L2	REF:	p. 261 p. 262 p. 277
84.	ANS:	С	PTS:	1	DIF:	L3	REF:	p. 257 p. 264
85	OBJ: ANS:	9.2.2 9.5.2 B	STA: PTS:		DIF:	12	BEE	p. 269 p. 277
05.		9.3.2 9.5.3		Ch.2.b Ch.5	DII.		KLI [*] .	p. 209 p. 277
86.	ANS: OBJ:		PTS:	1 Ch.11.d	DIF:	L1	REF:	p. 800
87.	ANS:		PTS:		DIF:	L1	REF:	p. 801
00	OBJ:			Ch.11.d		T 1	DEE.	n 802
00.	ANS: OBJ:		PTS: STA:	Ch.11.e	DIF:		KEF:	p. 802

89	ANS	D	PTS	1	DIE	L2	REE	n 800
07.				Ch.11.e	DII.	112	KLI.	p. 000
90.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 801
	OBJ:	25.1.2	STA:	Ch.11.d				-
91.	ANS:		PTS:		DIF:	L2	REF:	p. 801
		25.1.2		Ch.11.d				
92.	ANS:		PTS:		DIF:	L2	REF:	p. 802
		25.1.2		Ch.11.e	D.IE			
93.	ANS:		PTS:	1		L2	REF:	p. 800 p. 804
04		25.1.2 25.2.1		1	DIF:	Ch.11.d	DEE.	$n = 202 \mid n = 204$
94.	ANS:	25.2.1		1 Ch.11.d	DIF.	LJ	KEF.	p. 803 p. 804
95	ANS:		PTS:		DIF:	T 1	BEE	p. 813
<i>))</i> .				Ch.11.b	DII.	LI	KLI.	p. 015
96.	ANS:		PTS:		DIF:	L1	REF:	p. 813
201	OBJ:		1 1.01	-	2	21		prote
97.	ANS:		PTS:	1	DIF:	L1	REF:	p. 810
	OBJ:	25.3.3	STA:	Ch.11.b				
98.	ANS:	А	PTS:	1	DIF:	L2	REF:	p. 128
	OBJ:	5.1.2	STA:	Ch.1.i				
99.	ANS:		PTS:	1	DIF:	L2	REF:	p. 131
	OBJ:	5.1.3	STA:	Ch.1.i				
100.	ANS:		PTS:		DIF:	L2	REF:	p. 131
	OBJ:			Ch.1.i				
101.	ANS:		PTS:		DIF:	L2	REF:	p. 131 p. 132
100	OBJ:			Ch.1.i	DIE	1.2	DEE	122
102.	ANS:		PTS:		DIF:	L3	KEF:	p. 132
103	OBJ: ANS:		PTS:	Ch.1.i	DIE	13	DEE.	n 128
105.	OBJ:			Ch.1.i	DIF:	LJ	KEF.	p. 128
104	ANS:		PTS:		DIF:	I.1	RFF	p. 134
1011	OBJ:			Ch.1.i	DII.		REI .	p. 13 (
105.	ANS:		PTS:		DIF:	L2	REF:	p. 131
	OBJ:			Ch.1.i				r -
106.	ANS:	D	PTS:	1	DIF:	L2	REF:	p. 133 p. 134 p. 135
	OBJ:	5.2.1	STA:	Ch.1.g				
107.	ANS:	А	PTS:	1	DIF:	L3	REF:	p. 134
	OBJ:	5.2.1	STA:	Ch.1.g Ch.1.i				
108.	ANS:		PTS:		DIF:	L3	REF:	p. 133 p. 134
	OBJ:			Ch.1.g				
109.	ANS:		PTS:		DIF:	L3	REF:	p. 133 p. 134
	OBJ:			Ch.1.g	D.IE			100
110.	ANS:		PTS:		DIF:	L2	REF:	p. 139
111	OBJ:			Ch.11.e		1.2	DEE	m 120
111.	ANS: OBJ:		PTS:		DIF:	LZ	KEF:	p. 139
112	ANS:		PTS:	Ch.1.j	DIF:	12	BEE	p. 139
112.	OBJ:			Ch.1.j	υп,		KLI'.	p. 157
	000.	0.0.1	J 1 1 1.	C				

113.		D 5.3.1		1 Ch.1.j	DIF:	L2	REF:	p. 139
114.	ANS:		PTS:	1 Ch.1.j	DIF:	L2	REF:	p. 139
115.	ANS:		PTS:	e e	DIF:	L2	REF:	p. 141
116.	ANS:		PTS:	•	DIF:	L2	REF:	p. 142 p. 143
117.	ANS:		PTS:	1	DIF:	L2	REF:	p. 141
118.	ANS:	А	PTS:	•	DIF:	L2	REF:	p. 143
119.	ANS:		PTS:		DIF:	L3	REF:	p. 142
120.	ANS:		PTS:	•	DIF:	L3	REF:	p. 143
121.	ANS:		PTS:	1	DIF:	L1	REF:	p. 144
122.		B 5.3.4	STA:	Ch.1.i	DIF:	L1	REF:	p. 130
123.	ANS: OBJ:	A 5.3.3 5.3.4	PTS: STA:	1 Ch.1.i	DIF:	L2	REF:	p. 143
124.	ANS: OBJ:	C 5.3.4		1 Ch.1.i	DIF:	L2	REF:	p. 145
125.	ANS: OBJ:	D 5.3.4	PTS: STA:	1 Ch.1.i	DIF:	L2	REF:	p. 144
126.		D 5.3.4		1 Ch.1.i	DIF:	L2	REF:	p. 145
127.	ANS: OBJ:	B 6.2; G2	PTS:	1	DIF:	1	REF:	Page Ref: 6.2
128.	ANS: OBJ:	D 6.8; G2	PTS:	1	DIF:	2	REF:	Page Ref: 6.8
		6.8; G2	PTS:					Page Ref: 6.8
130.		6.8; G2		1		2		Page Ref: 6.8
		6.8; G2	PTS:		DIF:			Page Ref: 6.8
		6.9; G2	PTS:		DIF:			Page Ref: 6.8
		EK.1.D.3	PTS:			Easy		Section: 7.1
		EK.1.D.3	PTS:		DIF:			Section: 7.1
135.	ANS: OBJ:	A EK.1.B.2	PTS:	1	DIF:	Medium	REF:	Section: 7.8

SHORT ANSWER

136.	ANS: $1s^2 2s^2$					
137.	ANS:	$ 1 5.2.1 2p^6 3s^2 3p^5 $		L1 Ch.1.g	REF:	p. 133 p. 134
138.	ANS:	$1 \\ 5.2.1 \\ 2p^{6}3s^{2}3p^{6}3d^{10}$		L2 Ch.1.g	REF:	p. 133 p. 134
139.	OBJ: ANS:	1 5.2.1 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4	STA:	L2 Ch.1.g	REF:	p. 133 p. 134
140.	ANS:	1 5.2.2 400 to 750 nm			REF:	p. 134 p. 135 p. 136
141.	ANS:	1 6.1; G4 ectrum	DIF:	1	REF:	Page Ref: 6.1
142.	ANS:	6.3; G2	DIF:			Page Ref: 6.3 < ultraviolet < gamma rays
143.	PTS: ANS: violet		DIF:	Medium	REF:	Section: 7.1 OBJ: EK.1.D.3
144.	PTS: ANS: red	1	DIF:	Easy	REF:	Section: 7.1 OBJ: EK.1.D.3
145.	PTS: ANS: violet		DIF:	Easy	REF:	Section: 7.1 OBJ: EK.1.D.3
	PTS:	1	DIF:	Easy	REF:	Section: 7.1 OBJ: EK.1.D.3